赞
踩
在终端执行如下命令,建议先切换到国内源,如huaweicloud mirrors。
- sudo apt purge nvidia* # 卸载旧驱动
- ubuntu-drivers devices # 可以看到显卡等设备,和推荐的驱动
- sudo ubuntu-drivers autoinstall # 安装推荐驱动,通常是最新版
如果通过ubuntu-drivers devices看不到NVidia显卡,则添加
- sudo add-apt-repository ppa:graphics-drivers
- sudo apt-get update
安装完后,重启系统, 启动后,在图形界面运行Nvidia X Server Settings,可以看到显卡情况,如下图。
先下载Anaconda,下载地址:
Anaconda | Anaconda Distribution
下载适合电脑Python版本和计算平台的版本。
安装 Anaconda
- bash Anaconda3-5.3.0-Linux-x86_64.sh # make sure append the Anaconda executable directory to your PATH environment variable in .bashrc
- source ~/.bashrc
- python --version # to show the python version
装之前,推荐切换到国内源:
anaconda的源改为国内镜像, 配置文件是~/.condarc
- conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- conda config --set show_channel_urls yes
pip源改为国内镜像, 配置文件是~/.pip/pip.conf, 该后的文件内容如下:
- [global]
- index-url = https://pypi.tuna.tsinghua.edu.cn/simple/
- [install]
- trusted-host=https://pypi.tuna.tsinghua.edu.cn
update conda
- conda update conda -y
- conda update anaconda -y
- conda update python -y
- conda update --all -y
安装tensorflow
- conda create --name tf-gpu # Create a Python "virtual environment" for TensorFlow using conda
- conda activate tf-gpu # 注意运行此命令后,命令行开头的提示变为(tf-gpu) user@computer:~$,表示tf-gpu环境处于激活状态
- # 后面的命令,都在tf-gpu环境下执行,我保留了命令行的提示,以示区别
- (tf-gpu) user@computer:~$ conda install tensorflow-gpu -y # install TensorFlow with GPU acceleration and all of the dependencies.
为Tensorflow环境创建Jupyter Notebook Kernel
- (tf-gpu) user@computer:~$ conda install ipykernel -y
- (tf-gpu) user@computer:~$ conda install jupyter
- (tf-gpu) user@computer:~$ python -m ipykernel install --user --name tf-gpu --display-name "TensorFlow-GPU"
安装keras
(tf-gpu) user@computer:~$ conda install keras -y
用Keras 例程(Keras内部会用到Tensorflow)
打开Jupyter Notebook
jupyter notebook
创建新笔记: New下拉菜单 -> 选择TensorFlow-GPU
输入如下测试代码,并运行:
- # Import dependencies
- import keras
- from keras.datasets import mnist
- from keras.models import Sequential
- from keras.layers import Dense, Dropout
- from keras.layers import Flatten, MaxPooling2D, Conv2D
- from keras.callbacks import TensorBoard
-
- # Load and process the MNIST data
- # 推荐先下载mnist.npz到目录~/.keras/datasets/
- (X_train,y_train), (X_test, y_test) = mnist.load_data(path="mnist.npz")
- X_train = X_train.reshape(60000,28,28,1).astype('float32')
- X_test = X_test.reshape(10000,28,28,1).astype('float32')
- X_train /= 255
- X_test /= 255
- n_classes = 10
- y_train = keras.utils.to_categorical(y_train, n_classes)
- y_test = keras.utils.to_categorical(y_test, n_classes)
-
- # Create the LeNet-5 neural network architecture
- model = Sequential()
- model.add(Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)) )
- model.add(Conv2D(64, kernel_size=(3,3), activation='relu'))
- model.add(MaxPooling2D(pool_size=(2,2)))
- model.add(Dropout(0.25))
- model.add(Flatten())
- model.add(Dense(128, activation='relu'))
- model.add(Dropout(0.5))
- model.add(Dense(n_classes, activation='softmax')) # Compile the model
- model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Set log data to feed to TensorBoard for visual analysis
- tensor_board = TensorBoard('./logs/LeNet-MNIST-1') # Train the model
- model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=1,
- validation_data=(X_test,y_test), callbacks=[tensor_board])

运行完后查看误差曲线
(tf-gpu) dbk@i9:~$ tensorboard --logdir=./logs --port 6006
效果如下图
Ubuntu18.04 + NVidia显卡 + Anaconda3 + Tensorflow-GPU 安装、配置、测试 (无需手动安装CUDA) - xbit - 博客园
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。