赞
踩
随书代码,阅读笔记。
KNN是一种有监督的机器学习算法,可以解决分类问题,也可以解决回归问题。
算法优点:准确性高,对异常值和噪声有较高的容忍度;
算法缺点:计算量大,内存消耗也比较大。
针对算法计算量大,有一些改进的数据结构,避免重复计算K-D Tree, Ball Tree。
算法变种:根据邻居的距离,分配不同权重。另外一个变种是指定半径。
- %matplotlib inline
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
-
-
- from sklearn.datasets.samples_generator import make_blobs
- # 生成数据
- centers = [[-2, 2], [2, 2], [0, 4]]
- X, y = make_blobs(n_samples=60, centers=centers, random_state=0, cluster_std=0.60)
-
- # 画出数据
- plt.figure(figsize=(16, 10), dpi=144)
- c = np.array(centers)
- plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool'); # 画出样本
- plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='orange'); # 画出中心点
-
-
-
- from sklearn.neighbors import KNeighborsClassifier
- # 模型训练
- k = 5
- clf = KNeighborsClassifier(n_neighbors=k)
- clf.fit(X, y);
-
-
-
-
- # 进行预测
- X_sample = [0, 2]
- y_sample = clf.predict(X_sample);
- neighbors = clf.kneighbors(X_sample, return_distance=False);
-
- # 画出示意图
- plt.figure(figsize=(16, 10), dpi=144)
- plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool'); # 样本
- plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='k'); # 中心点
- plt.scatter(X_sample[0], X_sample[1], marker="x",
- c=y_sample, s=100, cmap='cool') # 待预测的点
-
- for i in neighbors[0]:
- plt.plot([X[i][0], X_sample[0]], [X[i][1], X_sample[1]],
- 'k--', linewidth=0.6); # 预测点与距离最近的 5 个样本的连线
-
-
- %matplotlib inline
- import matplotlib.pyplot as plt
- import numpy as np
-
-
-
- # 生成训练样本
- n_dots = 40
- X = 5 * np.random.rand(n_dots, 1)
- y = np.cos(X).ravel()
-
- # 添加一些噪声
- y += 0.2 * np.random.rand(n_dots) - 0.1
-
- # 训练模型
- from sklearn.neighbors import KNeighborsRegressor
- k = 5
- knn = KNeighborsRegressor(k)
- knn.fit(X, y);
-
- # 生成足够密集的点并进行预测
- T = np.linspace(0, 5, 500)[:, np.newaxis]
- y_pred = knn.predict(T)
- knn.score(X, y)
-
- #output:0.98579189493611052
-
- # 画出拟合曲线
- plt.figure(figsize=(16, 10), dpi=144)
- plt.scatter(X, y, c='g', label='data', s=100) # 画出训练样本
- plt.plot(T, y_pred, c='k', label='prediction', lw=4) # 画出拟合曲线
- plt.axis('tight')
- plt.title("KNeighborsRegressor (k = %i)" % k)
- plt.show()
-
-
- %matplotlib inline
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
-
- # 加载数据
- data = pd.read_csv('datasets/pima-indians-diabetes/diabetes.csv')
- print('dataset shape {}'.format(data.shape))
- data.head()
-
-
- data.groupby("Outcome").size()
- #Outcome
- #0 500 无糖尿病
- #1 268 有糖尿病
- #dtype: int64
-
-
- X = data.iloc[:, 0:8]
- Y = data.iloc[:, 8]
- print('shape of X {}; shape of Y {}'.format(X.shape, Y.shape))
-
-
-
- from sklearn.model_selection import train_test_split
- X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2);
-
- from sklearn.neighbors import KNeighborsClassifier, RadiusNeighborsClassifier
-
- models = []
- models.append(("KNN", KNeighborsClassifier(n_neighbors=2)))
- models.append(("KNN with weights", KNeighborsClassifier(
- n_neighbors=2, weights="distance")))
- models.append(("Radius Neighbors", RadiusNeighborsClassifier(
- n_neighbors=2, radius=500.0)))
-
-
-
- results = []
- for name, model in models:
- model.fit(X_train, Y_train)
- results.append((name, model.score(X_test, Y_test)))
- for i in range(len(results)):
- print("name: {}; score: {}".format(results[i][0],results[i][1]))
-
- #name: KNN; score: 0.681818181818
- #name: KNN with weights; score: 0.636363636364
- #name: Radius Neighbors; score: 0.62987012987
-
- from sklearn.model_selection import KFold
- from sklearn.model_selection import cross_val_score
-
- #kfold 训练10次,计算10次的平均准确率
- results = []
- for name, model in models:
- kfold = KFold(n_splits=10)
- cv_result = cross_val_score(model, X, Y, cv=kfold)
- results.append((name, cv_result))
- for i in range(len(results)):
- print("name: {}; cross val score: {}".format(
- results[i][0],results[i][1].mean()))
-
- #name: KNN; cross val score: 0.714764183185
- #name: KNN with weights; cross val score: 0.677050580998
- #name: Radius Neighbors; cross val score: 0.6497265892
-
-
- #模型训练
- knn = KNeighborsClassifier(n_neighbors=2)
- knn.fit(X_train, Y_train)
- train_score = knn.score(X_train, Y_train)
- test_score = knn.score(X_test, Y_test)
- print("train score: {}; test score: {}".format(train_score, test_score))
-
-
- #画出学习曲线
- from sklearn.model_selection import ShuffleSplit
- from common.utils import plot_learning_curve
-
- knn = KNeighborsClassifier(n_neighbors=2)
- cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
- plt.figure(figsize=(10, 6), dpi=200)
- plot_learning_curve(plt, knn, "Learn Curve for KNN Diabetes",
- X, Y, ylim=(0.0, 1.01), cv=cv);
-
- #数据可视化
- # 从8个特征中选择2个最重要的特征进行可视化
-
- from sklearn.feature_selection import SelectKBest
-
- selector = SelectKBest(k=2)
- X_new = selector.fit_transform(X, Y)
- X_new[0:5]
-
- results = []
- for name, model in models:
- kfold = KFold(n_splits=10)
- cv_result = cross_val_score(model, X_new, Y, cv=kfold)
- results.append((name, cv_result))
- for i in range(len(results)):
- print("name: {}; cross val score: {}".format(
- results[i][0],results[i][1].mean()))
-
-
-
- # 画出数据
- plt.figure(figsize=(10, 6), dpi=200)
- plt.ylabel("BMI")
- plt.xlabel("Glucose")
- plt.scatter(X_new[Y==0][:, 0], X_new[Y==0][:, 1], c='r', s=20, marker='o'); # 画出样本
- plt.scatter(X_new[Y==1][:, 0], X_new[Y==1][:, 1], c='g', s=20, marker='^'); # 画出样本
-
- #2个特征和8个特征得到的结果差不多。分类效果达到了瓶颈
-
-
-
-
-
-
KNN对糖尿病进行测试,无法得到比较高的预测准确性
扩展阅读
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。