赞
踩
Ultralytics YOLOv8.0.202
Python-3.9.16
torch-1.13.1
CUDA:11.6 (NVIDIA GeForce GTX 1650, 4096MiB)
我自己数据集是xml格式
将PascalVOC格式的XML标注文件转换为YOLO格式的TXT标注文件,转换代码
- import xml.etree.ElementTree as ET
- import os, cv2
- import numpy as np
- from os import listdir
- from os.path import join
-
- classes = []
-
- def convert(size, box):
- dw = 1. / (size[0])
- dh = 1. / (size[1])
- x = (box[0] + box[1]) / 2.0 - 1
- y = (box[2] + box[3]) / 2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x * dw
- w = w * dw
- y = y * dh
- h = h * dh
- return (x, y, w, h)
-
-
- def convert_annotation(xmlpath, xmlname):
- with open(xmlpath, "r", encoding='utf-8') as in_file:
- txtname = xmlname[:-4] + '.txt'
- txtfile = os.path.join(txtpath, txtname)
- tree = ET.parse(in_file)
- root = tree.getroot()
- filename = root.find('filename')
- img = cv2.imdecode(np.fromfile('{}/{}.{}'.format(imgpath, xmlname[:-4], postfix), np.uint8), cv2.IMREAD_COLOR)
- h, w = img.shape[:2]
- res = []
- for obj in root.iter('object'):
- cls = obj.find('name').text
- if cls not in classes:
- classes.append(cls)
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
- float(xmlbox.find('ymax').text))
- bb = convert((w, h), b)
- res.append(str(cls_id) + " " + " ".join([str(a) for a in bb]))
- if len(res) != 0:
- with open(txtfile, 'w+') as f:
- f.write('\n'.join(res))
-
-
-
- if __name__ == "__main__":
- postfix = 'jpg'
- imgpath = 'VOCdevkit/JPEGImages'
- xmlpath = 'VOCdevkit/Annotations'
- txtpath = 'VOCdevkit/txt'
-
- if not os.path.exists(txtpath):
- os.makedirs(txtpath, exist_ok=True)
-
- list = os.listdir(xmlpath)
- error_file_list = []
- for i in range(0, len(list)):
- try:
- path = os.path.join(xmlpath, list[i])
- if ('.xml' in path) or ('.XML' in path):
- convert_annotation(path, list[i])
- print(f'file {list[i]} convert success.')
- else:
- print(f'file {list[i]} is not xml format.')
- except Exception as e:
- print(f'file {list[i]} convert error.')
- print(f'error message:\n{e}')
- error_file_list.append(list[i])
- print(f'this file convert failure\n{error_file_list}')
- print(f'Dataset Classes:{classes}')

注意修改文件的路径
将images中的图片换成自己数据集的图片,图片存放于images/train,我只用的train,没有用test和val,所以只说train的。
将xml转换成的txt直接转换到labels/train文件夹里面。
一切就绪,开始训练。
我觉得用以上方法比用下面这个xml训练要方便,之前用VOC训练的时候一直报错啊,改了之后训练成功了,因人而异吧也算是。
报错过程:
自己的数据集训练过程。
记录自己训练过程,如果在训练其他的会再记录。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。