赞
踩
首先创建虚拟环境下载安装(其实就是yolov8的环境)再大概写一下步骤,没有想详细的看本人另外一篇:YOLOv8环境搭建_yolov8环境配置-CSDN博客
1、下载安装anaconda
2、创建虚拟环境
conda create -n my_yolov8 python=3.8.8
3、激活刚创建的虚拟环境
activate my_yolov8
4、 到官方网站下载yolo模型 ,下载好后解压
https://github.com/ultralytics/ultralytics
4、文件requirements.txt ,安装配置环境
pip install -r 自己的requirements路径\ultralytics-main\requirements.txt
requirements.txt内容:自己可以在下载的ultralytics-main下面新建一个txt
- # Ultralytics requirements
- # Usage: pip install -r requirements.txt
-
- # Base ----------------------------------------
- hydra-core>=1.2.0
- matplotlib>=3.2.2
- numpy>=1.18.5
- opencv-python>=4.1.1
- Pillow>=7.1.2
- PyYAML>=5.3.1
- requests>=2.23.0
- scipy>=1.4.1
- torch>=1.7.0
- torchvision>=0.8.1
- tqdm>=4.64.0
-
- # Logging -------------------------------------
- tensorboard>=2.4.1
- # clearml
- # comet
-
- # Plotting ------------------------------------
- pandas>=1.1.4
- seaborn>=0.11.0
-
- # Export --------------------------------------
- # coremltools>=6.0 # CoreML export
- # onnx>=1.12.0 # ONNX export
- # onnx-simplifier>=0.4.1 # ONNX simplifier
- # nvidia-pyindex # TensorRT export
- # nvidia-tensorrt # TensorRT export
- # scikit-learn==0.19.2 # CoreML quantization
- # tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
- # tensorflowjs>=3.9.0 # TF.js export
- # openvino-dev # OpenVINO export
-
- # Extras --------------------------------------
- ipython # interactive notebook
- psutil # system utilization
- thop>=0.1.1 # FLOPs computation
- # albumentations>=1.0.3
- # pycocotools>=2.0.6 # COCO mAP
- # roboflow
-
- # HUB -----------------------------------------
- GitPython>=3.1.24
激活自己的虚拟环境先下载安装labelimg,要装rolabelimg要先装labelimg
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple labelImg==1.8.6
在lib-site-packages-下有这两个了。
去github下载项目rolabelimg,
链接:https://pan.baidu.com/s/1fthJMm6E0r2zEVaZOiF3Gw
提取码:xikk,
解压后,进入项目中运行一下命令即可驱动,roLabelImg-master也可以放lib-site-packages
python 路径\roLabelImg.py
用按键zxcv进行旋转调整角度
# 文件名称 :roxml_to_dota.py
# 功能描述 :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
# 再转换成dota格式的txt文件
# 把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标
3.1 roxml2dotaxml2txt
- x1,y1,x2,y2,x3,y3,x4,y4
- import os
- import xml.etree.ElementTree as ET
- import math
-
- cls_list = ['1', 'gj', 'ladder'] #修改为自己的标签
-
-
- def edit_xml(xml_file, dotaxml_file):
- """
- 修改xml文件
- :param xml_file:xml文件的路径
- :return:
- """
-
- # dxml_file = open(xml_file,encoding='gbk')
- # tree = ET.parse(dxml_file).getroot()
-
- tree = ET.parse(xml_file)
- objs = tree.findall('object')
- for ix, obj in enumerate(objs):
- x0 = ET.Element("x0") # 创建节点
- y0 = ET.Element("y0")
- x1 = ET.Element("x1")
- y1 = ET.Element("y1")
- x2 = ET.Element("x2")
- y2 = ET.Element("y2")
- x3 = ET.Element("x3")
- y3 = ET.Element("y3")
- # obj_type = obj.find('bndbox')
- # type = obj_type.text
- # print(xml_file)
-
- if (obj.find('robndbox') == None):
- obj_bnd = obj.find('bndbox')
- obj_xmin = obj_bnd.find('xmin')
- obj_ymin = obj_bnd.find('ymin')
- obj_xmax = obj_bnd.find('xmax')
- obj_ymax = obj_bnd.find('ymax')
- # 以防有负值坐标
- xmin = max(float(obj_xmin.text), 0)
- ymin = max(float(obj_ymin.text), 0)
- xmax = max(float(obj_xmax.text), 0)
- ymax = max(float(obj_ymax.text), 0)
- obj_bnd.remove(obj_xmin) # 删除节点
- obj_bnd.remove(obj_ymin)
- obj_bnd.remove(obj_xmax)
- obj_bnd.remove(obj_ymax)
- x0.text = str(xmin)
- y0.text = str(ymax)
- x1.text = str(xmax)
- y1.text = str(ymax)
- x2.text = str(xmax)
- y2.text = str(ymin)
- x3.text = str(xmin)
- y3.text = str(ymin)
- else:
- obj_bnd = obj.find('robndbox')
- obj_bnd.tag = 'bndbox' # 修改节点名
- obj_cx = obj_bnd.find('cx')
- obj_cy = obj_bnd.find('cy')
- obj_w = obj_bnd.find('w')
- obj_h = obj_bnd.find('h')
- obj_angle = obj_bnd.find('angle')
- cx = float(obj_cx.text)
- cy = float(obj_cy.text)
- w = float(obj_w.text)
- h = float(obj_h.text)
- angle = float(obj_angle.text)
- obj_bnd.remove(obj_cx) # 删除节点
- obj_bnd.remove(obj_cy)
- obj_bnd.remove(obj_w)
- obj_bnd.remove(obj_h)
- obj_bnd.remove(obj_angle)
-
- x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
- x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
- x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
- x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)
-
- # obj.remove(obj_type) # 删除节点
- obj_bnd.append(x0) # 新增节点
- obj_bnd.append(y0)
- obj_bnd.append(x1)
- obj_bnd.append(y1)
- obj_bnd.append(x2)
- obj_bnd.append(y2)
- obj_bnd.append(x3)
- obj_bnd.append(y3)
-
- tree.write(dotaxml_file, method='xml', encoding='utf-8') # 更新xml文件
-
-
- # 转换成四点坐标
- def rotatePoint(xc, yc, xp, yp, theta):
- xoff = xp - xc;
- yoff = yp - yc;
- cosTheta = math.cos(theta)
- sinTheta = math.sin(theta)
- pResx = cosTheta * xoff + sinTheta * yoff
- pResy = - sinTheta * xoff + cosTheta * yoff
- return str(int(xc + pResx)), str(int(yc + pResy))
-
-
- def totxt(xml_path, out_path):
- # 想要生成的txt文件保存的路径,这里可以自己修改
-
- files = os.listdir(xml_path)
- i = 0
- for file in files:
-
- tree = ET.parse(xml_path + os.sep + file)
- root = tree.getroot()
-
- name = file.split('.')[0]
-
- output = out_path + '\\' + name + '.txt'
- file = open(output, 'w')
- i = i + 1
- objs = tree.findall('object')
- for obj in objs:
- cls = obj.find('name').text
- box = obj.find('bndbox')
- x0 = int(float(box.find('x0').text))
- y0 = int(float(box.find('y0').text))
- x1 = int(float(box.find('x1').text))
- y1 = int(float(box.find('y1').text))
- x2 = int(float(box.find('x2').text))
- y2 = int(float(box.find('y2').text))
- x3 = int(float(box.find('x3').text))
- y3 = int(float(box.find('y3').text))
- if x0 < 0:
- x0 = 0
- if x1 < 0:
- x1 = 0
- if x2 < 0:
- x2 = 0
- if x3 < 0:
- x3 = 0
- if y0 < 0:
- y0 = 0
- if y1 < 0:
- y1 = 0
- if y2 < 0:
- y2 = 0
- if y3 < 0:
- y3 = 0
- for cls_index, cls_name in enumerate(cls_list):
- if cls == cls_name:
- file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
- file.close()
- # print(output)
- print(i)
-
-
- if __name__ == '__main__':
- # -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
- roxml_path = r'E:\CodeProject\ultralytics-main-OBB\data_transfor\org_xml'
- dotaxml_path = r'E:\CodeProject\ultralytics-main-OBB\data_transfor\dota_xml'
- out_path = r'E:\CodeProject\ultralytics-main-OBB\data_transfor\dota_txt'
- filelist = os.listdir(roxml_path)
- for file in filelist:
- edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))
-
- # -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
- totxt(dotaxml_path, out_path)
Yolov8_OBB斜框训练自己的数据集手把手教学_yolov8 obb-CSDN博客
下载模型预训练权重:
训练:
yolo obb train data=路径\datasets\my-dota8-obb.yaml model=yolov8s-obb.pt epochs=20 imgsz=640 device=0,1,2,3
参考:
windows下python3安装rolabelimg或者labelimg2标注斜框-CSDN博客
Yolov8_obb(prob loss) 基于anchor_free的旋转框目标检测,剪枝,跟踪(ByteTracker)_yolov8 obb-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。