赞
踩
将 Pycharm 接上 Anaconda 环境的解释器
( 我这里是使用了 Anaconda 环境下 自建的 tensorflow 虚拟环境 )
注:记得在 Anaconda Prompt (Anaconda3) 里 提前安装好 opencv 和 opencv-contrib 模块
使用电脑摄像头进行样本采集
我这里分别采集2个人的样本 (各1000张)
注:
第一个人:
import cv2
cap = cv2.VideoCapture(0) # 打开摄像头0 / 若为“xxxx.mp4”则为视频文件
isOpened = cap.isOpened() # 判断是否打开/ 为后续提供条件语句
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(fps, width, height)
i = 0
while isOpened:
if i == 1000:
break
else:
i += 1
(flag, frame) = cap.read() # flag是否读取成功, frame为图片内容
fileName = "image" + str(i) + ".jpg"
if flag:
cv2.imwrite(f"../03_DataSet/01_Grocery/{fileName}", frame, [cv2.IMWRITE_JPEG_QUALITY, 100])
cv2.imshow("Hello!", frame)
if cv2.waitKey(1) == ord("q"):
break
print("END")
第二个人:
import cv2
cap = cv2.VideoCapture(0) # 打开摄像头0 / 若为“xxxx.mp4”则为视频文件
isOpened = cap.isOpened() # 判断是否打开/ 为后续提供条件语句
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(fps, width, height)
i = 1000
while isOpened:
if i == 2000:
break
else:
i += 1
(flag, frame) = cap.read() # flag是否读取成功, frame为图片内容
fileName = "image" + str(i) + ".jpg"
if flag:
cv2.imwrite(f"../03_DataSet/01_Grocery/{fileName}", frame, [cv2.IMWRITE_JPEG_QUALITY, 100])
cv2.imshow("Hello!", frame)
if cv2.waitKey(1) == ord("q"):
break
print("END")
简述步骤:
Notes:
import cv2
import numpy as np
face_xml = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def samples_and_labels():
faceData = []
ids = []
for i in range(1, 2000):
path = "../03_DataSet/01_Grocery/image" + str(i) + ".jpg"
img = cv2.imread(path)
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_xml.detectMultiScale(imgGray)
for (x, y, w, h) in faces:
if i <= 1000:
ids.append(1)
else:
ids.append(2)
faceData.append(imgGray[y:y+h, x:x+w])
return faceData, ids
(faces, ids) = samples_and_labels()
print(faces, ids)
print("Training...")
jackData = cv2.face.LBPHFaceRecognizer_create() # 创建LBPH
jackData.train(faces, np.array(ids)) # 参数1 为人脸像素数据 参数2 为对应人脸标签
jackData.save("jackData_trainner.yml")
print("Finish")
说明一下:
if ord("q") == cv2.waitKey(1):
break
import cv2
import numpy as np
recog = cv2.face.LBPHFaceRecognizer_create()
recog.read("jackData_trainner.yml")
face_xml = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
names = ["name1", "name2"]
cap = cv2.VideoCapture(0)
isOpened = cap.isOpened()
while(isOpened):
(flag, frame) = cap.read()
frameGray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face = face_xml.detectMultiScale(frameGray, 1.4, 3)
for(x, y, w, h) in face:
cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 1), 2, cv2.LINE_AA)
ids, confidence = recog.predict(frameGray[y:y+h, x:x+w])
print(confidence)
if confidence > 70:
cv2.putText(frame, "Who are you?", (x, y-8), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
else:
cv2.putText(frame, names[ids-1], (x, y-8), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
cv2.imshow("test", frame)
if ord("q") == cv2.waitKey(1):
break
附:完整Python代码下载 https://download.csdn.net/download/Panzer_Jack/85609567
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。