赞
踩
前言:回归任务是神经网络的一个重要的任务,通俗的讲,回归任务就是给你一系列的输入,然后预测出输出的任务,比如预测气温,预测股票等等,都是回归任务。
下面还是直接看代码,根据代码来学习回归任务
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- import torch
- import torch.optim as optim
- import warnings
打印看一下数据的样子
- features = pd.read_csv('temps.csv')
-
- #看看数据长什么样子
- features.head()
actual为标签,其余的均为输入
print('数据维度:', features.shape)
打印以下数据的形状:(348,9)
将输入数据可视化:
- # 准备画图
- # 指定默认风格
- plt.style.use('fivethirtyeight')
-
- # 设置布局
- fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
- fig.autofmt_xdate(rotation = 45)
-
- # 标签值
- ax1.plot(dates, features['actual'])
- ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
-
- # 昨天
- ax2.plot(dates, features['temp_1'])
- ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
-
- # 前天
- ax3.plot(dates, features['temp_2'])
- ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
-
-
- ax4.plot(dates, features['friend'])
- ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
-
- plt.tight_layout(pad=2)
结果为:
然后把星期几转化为独热编码的格式,独热编码就是不重复样本数,将所有样本按照0或者1进行编码,如:0000001代表星期日
- features = pd.get_dummies(features)
- features.head(5)
最后编码后的结果为:
将数据处理成特征和标签的形式:
- # 标签
- labels = np.array(features['actual'])
-
- # 在特征中去掉标签
- features= features.drop('actual', axis = 1)
-
- # 名字单独保存一下,以备后患
- feature_list = list(features.columns)
-
- # 转换成合适的格式
- features = np.array(features)
- features.shape
- labels.shape
最后得到的特征为(348,14),标签为(348,)
- x = torch.tensor(input_features, dtype = float)
-
- y = torch.tensor(labels, dtype = float)
-
- # 权重参数初始化
- weights = torch.randn((14, 128), dtype = float, requires_grad = True)
- biases = torch.randn(128, dtype = float, requires_grad = True)
- weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
- biases2 = torch.randn(1, dtype = float, requires_grad = True)
-
- learning_rate = 0.001
- losses = []
-
- for i in range(1000):
- # 计算隐层
- hidden = x.mm(weights) + biases
- # 加入激活函数
- hidden = torch.relu(hidden)
- # 预测结果
- predictions = hidden.mm(weights2) + biases2
- # 通计算损失
- loss = torch.mean((predictions - y) ** 2)
- losses.append(loss.data.numpy())
-
- # 打印损失值
- if i % 100 == 0:
- print('loss:', loss)
- #返向传播计算
- loss.backward()
-
- #更新参数
- weights.data.add_(- learning_rate * weights.grad.data)
- biases.data.add_(- learning_rate * biases.grad.data)
- weights2.data.add_(- learning_rate * weights2.grad.data)
- biases2.data.add_(- learning_rate * biases2.grad.data)
-
- # 每次迭代都得记得清空
- weights.grad.data.zero_()
- biases.grad.data.zero_()
- weights2.grad.data.zero_()
- biases2.grad.data.zero_()
-
上面的网络模型的构建是具体的过程,有助于理解,实际中一般都是用具体的包,流程为:将数据装化为张量格式---->初始化权重参数和偏置项---->计算前向传播结果---->计算损失---->反向传播---->沿梯度更新参数---->将梯度清零。
更将单的写法为:
- input_size = input_features.shape[1]
- hidden_size = 128
- output_size = 1
- batch_size = 16
- my_nn = torch.nn.Sequential(
- torch.nn.Linear(input_size, hidden_size),
- torch.nn.Sigmoid(),
- torch.nn.Linear(hidden_size, output_size),
- )
- cost = torch.nn.MSELoss(reduction='mean')
- optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
接下来就是最重要的训练网络:
- # 训练网络
- losses = []
- for i in range(1000):
- batch_loss = []
- # MINI-Batch方法来进行训练
- for start in range(0, len(input_features), batch_size):
- end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
- xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
- yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
- prediction = my_nn(xx)
- loss = cost(prediction, yy)
-
- loss.backward(retain_graph=True)
- optimizer.step()
- optimizer.zero_grad()
-
- batch_loss.append(loss.data.numpy())
-
- # 打印损失
- if i % 100==0:
- losses.append(np.mean(batch_loss))
- print(i, np.mean(batch_loss))
流程为:获取batch数据---->送入网络---->获取预测值---->计算损失---->反向传播---->沿梯度更新参数---->将梯度清零
最后可视化
- # 转换日期格式
- dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
- print(dates)
- dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
- #print(dates)
- # 创建一个表格来存日期和其对应的标签数值
- true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
-
- # 同理,再创建一个来存日期和其对应的模型预测值
- months = features[:, feature_list.index('month')]
- days = features[:, feature_list.index('day')]
- years = features[:, feature_list.index('year')]
-
- test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
-
- test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
-
- predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
- # 真实值
- plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
-
- # 预测值
- plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
- plt.xticks(rotation = '60');
- plt.legend()
-
- # 图名
- plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
左边流程的链接:(23条消息) 神经网络入门(手写体的识别torch+jupyter+Mnist数据集)_萌新小白一只的博客-CSDN博客
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。