赞
踩
导入数据分析三剑客 import numpy as np import pandas as pd import matplotlib.pyplot as plt apple=pd.read_csv("C://Users/Administrator/Desktop/apple.csv") #a=apple.dtypes ''' Date object Open float64 High float64 Low float64 Close float64 Adj Close float64 Volume int64 dtype: object''' #a=apple.head() ''' Date Open High Low Close Adj Close Volume 0 1999-03-01 1.243304 1.243304 1.200893 1.205357 1.051931 121956800 1 1999-03-02 1.218750 1.261161 1.205357 1.236607 1.079204 170763600 2 1999-03-03 1.241071 1.254464 1.196429 1.220982 1.065567 73337600 3 1999-03-04 1.232143 1.232143 1.156250 1.194196 1.042192 91817600 4 1999-03-05 1.225446 1.225446 1.156250 1.185268 1.034399 117009200 ''' apple['Date']=pd.to_datetime(apple['Date'])#pd.to_datetime()将object类型数据转换为时间类型数据,int。有利于排序 #a=apple.dtypes ''' Date datetime64[ns] Open float64 High float64 Low float64 Close float64 Adj Close float64 Volume int64 dtype: object ''' #将Date设置为行索引 apple.set_index('Date',inplace=True) #a=apple.head() ''' Open High Low Close Adj Close Volume Date 1999-03-01 1.243304 1.243304 1.200893 1.205357 1.051931 121956800 1999-03-02 1.218750 1.261161 1.205357 1.236607 1.079204 170763600 1999-03-03 1.241071 1.254464 1.196429 1.220982 1.065567 73337600 1999-03-04 1.232143 1.232143 1.156250 1.194196 1.042192 91817600 1999-03-05 1.225446 1.225446 1.156250 1.185268 1.034399 117009200 ''' plt.plot(apple['Adj Close']) plt.show()
结果展示
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。