当前位置:   article > 正文

机器学习之路--Pandas

机器学习之路--Pandas

Pandas 是对numpy的封装

Pandas 核心结构DataFrame 近似看出矩阵结构
panda字符型叫object


dataframe其中一行或者一列叫series

dataframe 里面结构是series series里面的结构又是ndarryay
series 就是可以自定义索引的ndarray

string index可以用来字符串切片

常用代码

#导入模块
import pandas
#常用读取文件
food_info = pandas.read_csv("food_info.csv")
#文件类型 
print(type(food_info))
print (food_info.dtypes)
#帮助命令
print (help(pandas.read_csv))

 #默认显示前五行数据
#food_info.head(3)
#显示后四行数据
#food_info.tail(4) 
#显示列名
#print (food_info.columns) 
#显示行列
print (food_info.shape)

#显示第0行
print (food_info.loc[0])
#显示第3行到第6行包括第6行
food_info.loc[3:6]
#取第2行 第5行 第10行
two_five_ten = [2,5,10]  
food_info.loc[two_five_ten]
#按列名取数据  返回的是一个series结构 这是一种索引加ndarray的结构
ndb_col = food_info["NDB_No"]  
#按特定列明返回
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]

#返回列名以列表形式返回
col_names = food_info.columns.tolist()
gram_columns = []
#根据特定条件返回值
for c in col_names:
    if c.endswith("(g)"):
        gram_columns.append(c)
gram_df = food_info[gram_columns]
print(gram_df.head(3))

#对每列进行操作 返回值是一个series
div_1000 = food_info["Iron_(mg)"] / 1000
add_100 = food_info["Iron_(mg)"] + 100
sub_100 = food_info["Iron_(mg)"] - 100
mult_2 = food_info["Iron_(mg)"]*2
food_info["Water_(g)"] * food_info["Energ_Kcal"]
#新建了一列Iron_(g) 并且完成了赋值
food_info["Iron_(g)"] = iron_grams 

数据读取

import pandas
csv_info = pandas.read_csv('food_info.csv')
print(type(csv_info))    #<class 'pandas.core.frame.DataFrame'>
print(csv_info.dtypes)    #ps:字符型为object
print(csv_info.head())     #可视化读入数据,以表格的形式
print(csv_info.head(3))     #可视化读入数据,以表格的形式,显示前3条商品数据
print(csv_info.tail(3))     #可视化读入数据,以表格的形式,显示最后3条商品数据
print(csv_info.columns)      #显示csv表格商品的每个属性的名称,以列表的形式
print(csv_info.shape)      #显示读入数据的规模,即行和列   此例中的值为:(8618, 36)

 

索引,提取所需数据

import pandas
csv_info = pandas.read_csv('food_info.csv')
print(csv_info.loc[0])     #第一个商品的所有属性   数据类型为<class 'pandas.core.series.Series'>
print(csv_info.loc[3:6])    #切片操作,取出特定的数据 此数据为第3,4,5,6行的商品数据
print(csv_info.loc[1,3,6])    #切片操作,取出特定的数据 此数据为第1,3,6行的商品数据
columns = ['Lipid_Tot_(g)','Fiber_TD_(g)']    #指定2个属性
print(csv_info[columns])                      #打印这两列属性与索引编号
list = csv_info.columns.tolist()       #将所有属性名做成一个列表
a = []
for i in list:
    if i.endswith("(g)"):        #提取出所有以g为单位的属性,并以刘表的形式表出
        a.append(i)
b = csv_info[a]      #打印b为以g为单位的属性商品数据

 

进行加减乘除运算

import pandas
csv_info = pandas.read_csv('food_info.csv')
div_1000 = csv_info["Iron_(mg)"] / 1000     #单位由mg换为g
add_100 = csv_info["Iron_(mg)"] + 100
sub_100 = csv_info["Iron_(mg)"] - 100
mult_2 = csv_info["Iron_(mg)"]*2

 

添加一列的属性:(这个属性由已知属性计算得出)

import pandas
csv_info = pandas.read_csv('food_info.csv')
water_energy = csv_info["Water_(g)"] * csv_info["Energ_Kcal"]   #新的属性由两个已知属性的乘积得到
iron_grams = csv_info["Iron_(mg)"] / 1000    #进行单位换算
csv_info["Iron_(g)"] = iron_grams     #添加新的属性添加新的一列

 

找出某一列的最大值

import pandas
csv_info = pandas.read_csv('food_info.csv')
c = csv_info['Lipid_Tot_(g)'].max()
print(c)

 

对某一属性进行升序或者降序排序

import pandas
csv_info = pandas.read_csv('food_info.csv')
csv_info.sort_values("Sodium_(mg)", inplace=True)      #进行升序排序,inplace=True表示是新建立内存空间
csv_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)    #加入aseending=False,表示不按照升序排序,也就是按照降序排序

 

数据预处理经典案例:泰坦尼克号登船人员信息

q:年龄缺失的成员有多少人?

 

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
age = survival['Age']       #提取出age属性对其操作
age_null = age.isnull()        #如果缺失,属性值为true 如果存在则为false
age_nulltrue = age[age_null]      #提取出属性值为true的商品
print(len(age_nulltrue))     #计算出其长度 也就是缺失年龄数据的船员人数

 

q:为什么要提取缺失成员并去掉?

a:如果有缺失值,不能对此属性数据进行运算。例如求平均年龄等(ps:平均年龄求法:mean_age = sum(titanic_survival["Age"]) / len(titanic_survival["Age"]))

q:如何筛选出不是nan的值?

 

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
age = survival['Age']       #提取出age属性对其操作
age_null = age.isnull()        #如果缺失,属性值为true 如果存在则为false
good_age = survival['Age'][age_null == False]
print(good_age)

 

 

如果想求平均值,还有一个方法(内置方法,忽略nan值):

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
age = survival['Age'].mean()     
print(age)

 

q:对一二三等舱求对应的平均价格怎么求:(*****)

正常思路:

passenger_classes = [1, 2, 3]
fares_by_class = {}
for this_class in passenger_classes:
    pclass_rows = titanic_survival[titanic_survival["Pclass"] == this_class]
    pclass_fares = pclass_rows["Fare"]
    fare_for_class = pclass_fares.mean()
    fares_by_class[this_class] = fare_for_class
print fares_by_class

 

pandas方法:

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
passenger_survival = survival.pivot_table(index="Pclass", values="Fare", aggfunc=np.mean)
print(passenger_survival)

 

各个舱位的获救概率也可以利用此方法:

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
passenger_survival = survival.pivot_table(index="Pclass", values="Survived", aggfunc=np.mean)
print(passenger_survival)

 

 三个码头与获救人数和价格的关系(此时求的是和,不是均值)

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
passenger_survival = survival.pivot_table(index="Embarked", values=["Fare","Survived"], aggfunc=np.sum)
print(passenger_survival)

 

在pivot_table中不写aggfunc= 默认输出平均值

删除一些有nan的行,让数据都是可处理的

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
drop_na_columns = survival.dropna(axis=1)
new_titanic_survival = survival.dropna(axis=0,subset=["Age", "Sex"])       #不要age或者sex里面为空的数据
print(new_titanic_survival)

 

通过索引的方法找到具体需要的数据

row_index_83_age = titanic_survival.loc[83,"Age"]
row_index_1000_pclass = titanic_survival.loc[766,"Pclass"]

 

 如果要把排序好的index(索引)值也发生相应的改变,变为排序好的

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
new_titanic_survival = survival.sort_values("Age",ascending=False)
print(new_titanic_survival[0:10])
itanic_reindexed = new_titanic_survival.reset_index(drop=True)
print(survival.iloc[0:10])

 

自定义函数(将自己编好的函数在对象中实现调用)

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
def a():
    pass
b = survival.apply(a)

def not_null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)

column_null_count = titanic_survival.apply(not_null_count)
print column_null_count

def which_class(row):
    pclass = row['Pclass']
    if pd.isnull(pclass):
        return "Unknown"
    elif pclass == 1:
        return "First Class"
    elif pclass == 2:
        return "Second Class"
    elif pclass == 3:
        return "Third Class"

classes = titanic_survival.apply(which_class, axis=1)
print classes

def generate_age_label(row):
    age = row["Age"]
    if pd.isnull(age):
        return "unknown"
    elif age < 18:
        return "minor"
    else:
        return "adult"

age_labels = titanic_survival.apply(generate_age_label, axis=1)
print age_labels

titanic_survival['age_labels'] = age_labels
age_group_survival = titanic_survival.pivot_table(index="age_labels", values="Survived")
print age_group_survival

dataframe 是由许多的series组成的,series也就是数据的其中一行或者其中一列

import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
series = survival['Name']     
print(type(series))     #<class 'pandas.core.series.Series'>
import pandas as pd
import numpy as np
survival = pd.read_csv('titanic_train.csv')    #读入文件
series = survival['Name']
a = series.values
print(type(a))      #<class 'numpy.ndarray'>

会发现pandas其实是封装在numpy里的
用匿名函数求标准差

rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
rt_mt_user.apply(lambda x: np.std(x), axis=1)

 补充:

1.

pandas中索引的使用

定义一个pandas的DataFrame对像


import pandas as pd
data = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]},index=["a","b","c"])
data

A B C
a 1 4 7
b 2 5 8
c 3 6 9

.loc 的使用

.loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是:

data.loc["b","B"]

因为行标签为b,列标签为B,同理,那么4就是data[“a”,”B”]
上面只是选择某一个值,那么如果我要选择一个区域呢,比如我要选择5,8,6,9,那么可以这样做:

data.loc['b':'c','B':'C']

因为选择的区域,左上角的值是5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开,记住,.loc是用行列标签来进行选择数据的。那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的

.iloc

.iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是,.iloc 是根据行数与列数来索引的,比如上面提到的得到数字5,那么用iloc来表示就是data.iloc[1,1],因为5是第2行第2列,注意索引从0开始的,同理4就是data.iloc[0,1],同样如果我们需要选择一个区域,比如我要选择5,8,6,9,那么用,iloc来选择就是

data.iloc[1:3,1:3]

因为5在第二行第二列,9在第三行第三列,注意此处区间前闭后开,所以是1:3,与loc不同的是loc前闭后闭,以及loc是根据行列标签,而.iloc是根据行数与列数

.ix

.ix我发现,上面两种用法他都可以,它既可以根据行列标签又可以根据行列数,比如拿到5

data.ix[1,1]
data.ix["b","B"]

上面两种做法都可以的,同理选择一个区域

data.ix[1:3,1:3]
data.ix['b':'c','B':'C']

以上两种方法都是取到5,6,8,9

转载于:https://www.cnblogs.com/ggnbnb/p/9820988.html

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号