当前位置:   article > 正文

【集合论】偏序关系 ( 偏序关系定义 | 偏序集定义 | 大于等于关系 | 小于等于关系 | 整除关系 | 包含关系 | 加细关系 )

偏序关系









一. 偏序关系




1. 偏序关系定义



( 1 ) 偏序关系定义 ( 自反 | 反对称 | 传递 )


偏序关系 定义 :

  • 1.前置条件 1 : A ̸ = ∅ A \not= \varnothing A̸= , 并且 R ⊆ A × A R \subseteq A \times A RA×A ;

  • 2.前置条件 2 : 如果 R R R自反 , 反对称 , 传递的 ;

    • ① 自反 : 每个元素 自己 和 自己 都有关系 , x R x xRx xRx ;
    • ② 反对称 : 如果 x R y xRy xRy 并且 y R x yRx yRx x = y x=y x=y , x ̸ = y x \not=y x̸=y , x R y xRy xRy y R x yRx yRx 不能同时存在 ; 可以没有 , 但是一定不能同时出现 ;
    • ③ 传递 : 如果 有 x R y xRy xRy , y R z yRz yRz , 那么必须有 x R z xRz xRz , 如果前提不成立 , 那么也勉强称为传递 ;
  • 3.结论 : R R R A A A 上的偏序关系 ;

  • 4.表示 : 使用 ⪯ \preceq 表示偏序关系 ;

  • 5.读法 : ⪯ \preceq 读作 "小于等于" ;

  • 6.使用公式表示 :
    &lt; x , y &gt; ∈ R ⟺ x R y ⟺ x ⪯ y &lt;x, y&gt; \in R \Longleftrightarrow xRy \Longleftrightarrow x \preceq y <x,y>RxRyxy

  • 7.公式解读 : 如果 x x x , y y y 两个元素 构成 有序对 &lt; x , y &gt; &lt;x,y&gt; <x,y> , 并且在偏序关系 R R R , x x x y y y 具有 R R R 关系 , 也可以写成 x x x 小于等于 ( 偏序符号 ) y y y ;

  • 8.常见的偏序关系 : 树 上 的 小于等于关系 , 集合上的包含关系 , 0 0 0 自然数之间的整除关系 , 都是常见的偏序关系 ;




( 2 ) 偏序关系 与 等价关系 ( 等价关系 用于分类 | 偏序关系 用于组织 )


偏序关系 与 等价关系 :

  • 1.表示层次结构 : 偏序关系是非常常用的二元关系 , 通常用来 表示 层次结构 ;
  • 2.等价关系 : 等价关系 是 用来分类的 , 将一个 集合 分为 几个等价类 ;
  • 3.偏序关系 : 偏序关系 通常是 用来组织的 , 在每个类的内部 , 赋予其一个结构 , 特别是层次结构 , 有上下层级 ,




2. 偏序集定义



( 1 ) 偏序集定义


偏序集 定义 :

  • 1.前置条件 1 : ⪯ \preceq A A A 上的 偏序关系 ;
  • 2.结论 : &lt; A , ⪯ &gt; &lt;A , \preceq&gt; <A,> 是偏序集 ;
  • 3.解读 : 集合 A A A 与 偏序关系 ⪯ \preceq 构成的有序对 , 称为 偏序集 ;





二. 偏序关系 示例




1. 小于等于关系



( 1 ) 小于等于关系 说明


偏序集示例 1 ( 小于等于关系 ≤ \leq 是 偏序关系 ) :

  • 1.公式表示 : ∅ ̸ = A ⊆ R , &lt; A , ≤ &gt; \varnothing \not= A \subseteq R , &lt;A , \leq &gt; ̸=AR,<A,>
  • 2.语言描述 : 如果 A A A 是 实数集 R R R 的 子集 , 并且 A A A 不能 是 空集 ∅ \varnothing , 集合 A A A 中的 小于等于关系 , 是偏序关系 ;
  • 3.使用集合形式表示关系 : ≤ = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ≤ y } \leq = \{ &lt;x,y&gt; | x,y \in A \land x \leq y \} ={<x,y>x,yAxy}



( 2 ) 小于等于关系 分析


实数集 A A A 上的 小于等于关系 ( ≤ \leq ) 分析 :

  • 1.自反性质分析 : x x x 小于等于 x x x , x ≤ x x \leq x xx , 是成立的 , 小于等于关系 是 自反的 ;
  • 2.反对称性质分析 : x x x 小于等于 y y y , y y y 小于等于 x x x , 推出 x = y x = y x=y , 符合 反对称性质 的 定义 , 因此 小于等于 关系 是 反对称的 ,
  • 3.传递性质分析 : x x x 小于等于 y y y , y y y 小于等于 z z z , x x x 小于等于 z z z , 是成立的 , 因此 小于等于关系 是 传递的 ;
  • 4.总结 : 综上所述 , 小于等于 关系 是 偏序关系 ;




2. 大于等于关系



( 1 ) 大于等于关系 说明


偏序集示例 2 ( 大于等于关系 ≥ \geq 是 偏序关系 ) :

  • 1.公式表示 : ∅ ̸ = A ⊆ R , &lt; A , ≥ &gt; \varnothing \not= A \subseteq R , &lt;A , \geq &gt; ̸=AR,<A,>
  • 2.语言描述 : 如果 A A A 是 实数集 R R R 的 子集 , 并且 A A A 不能 是 空集 ∅ \varnothing , 集合 A A A 中的 大于等于关系 ( ≥ \geq ) , 是偏序关系 ;
  • 3.使用集合形式表示关系 : ≥ = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ≥ y } \geq = \{ &lt;x,y&gt; | x,y \in A \land x \geq y \} ={<x,y>x,yAxy}



( 2 ) 大于等于关系 分析


实数集 A A A 上的 大于等于关系 ( ≥ \geq ) 分析 :

  • 1.自反性质分析 : x x x 大于等于 x x x , x ≥ x x \geq x xx , 是成立的 , 大于等于关系 是 自反的 ;
  • 2.反对称性质分析 : x x x 大于等于 y y y , y y y 大于等于 x x x , 推出 x = y x = y x=y , 符合 反对称性质 的 定义 , 因此 大于等于 关系 是 反对称的 ,
  • 3.传递性质分析 : x x x 大于等于 y y y , y y y 大于等于 z z z , x x x 大于等于 z z z , 是成立的 , 因此 大于等于关系 是 传递的 ;
  • 4.总结 : 综上所述 , 大于等于 关系 是 偏序关系 ;




3. 整除关系



( 1 ) 整除关系 说明


偏序集示例 3 ( 整除关系 是 偏序关系 ) :

  • 1.公式表示 : ∅ ̸ = A ⊆ Z + = { x ∣ x ∈ Z ∧ x &gt; 0 } &lt; A , ∣ &gt; \varnothing \not= A \subseteq Z_+ = \{ x | x \in Z \land x &gt; 0 \}&lt;A , | &gt; ̸=AZ+={xxZx>0}<A,>
  • 2.语言描述 : 如果 A A A 是 正整数集 Z + Z_+ Z+ 的 子集 , 并且 A A A 不能 是 空集 ∅ \varnothing , 集合 A A A 中的 整除关系 ( ∣ | ) , 是偏序关系 ;
  • 3.使用集合形式表示关系 : ∣ = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ∣ y } |= \{ &lt;x,y&gt; | x,y \in A \land x | y \} ={<x,y>x,yAxy}
  • 4.整除关系 : x ∣ y x|y xy , x x x y y y 的因子 , 或 y y y x x x 的倍数 ;



( 2 ) 整除关系 分析


正整数集 A A A 上的 整除关系 ( ∣ | ) 分析 :

  • 1.自反性质分析 : x x x 整除 x x x , x ∣ x x | x xx , 是成立的 , 整除关系 ( | ) 是 自反的 ;
  • 2.反对称性质分析 : x x x 整除 y y y , y y y 整除 x x x , 两个正整数互相都能整除 , 它们只能相等 , 推出 x = y x = y x=y , 符合 反对称性质 的 定义 , 因此 整除 关系 是 反对称的 ,
  • 3.传递性质分析 : x x x 整除 y y y , y y y 整除 z z z , x x x 整除 z z z , 是成立的 , 因此 整除关系 是 传递的 ;
  • 4.总结 : 综上所述 , 整除 关系 是 偏序关系 ;




4. 包含关系



( 1 ) 包含关系 说明


偏序集示例 4 ( 包含关系 ⊆ \subseteq 是 偏序关系 ) :

  • 1.公式表示 : A ⊆ P ( A ) , ⊆ = { &lt; x , y &gt; ∣ x , y ∈ A ∧ x ⊆ y } \mathscr{A} \subseteq P(A) , \subseteq = \{&lt;x , y&gt; | x , y \in \mathscr{A} \land x \subseteq y \} AP(A),={<x,y>x,yAxy}
  • 2.语言描述 : 集合 A A A 上的幂集合 P ( A ) P(A) P(A) , P ( A ) P(A) P(A) 的子集合 构成 集族 A \mathscr{A} A , 该集族 A \mathscr{A} A 上的包含关系 , 是偏序关系 ;



( 2 ) 包含关系 分析


分析 集合的 子集族 之间的包含关系 :


① 假设一个比较简单的集合

A = { a , b } A=\{a, b\} A={a,b}


② 分析 下面 A A A 的 3 个子集族 ;

A 1 = { ∅ , { a } , { b } } \mathscr{A}_1 = \{ \varnothing , \{a\} , \{b\} \} A1={,{a},{b}}

集族 A 1 \mathscr{A}_1 A1 包含 空集 ∅ \varnothing , 单元集 { a } \{a\} {a} , 单元集 { b } \{b\} {b} ;

A 2 = { { a } , { a , b } } \mathscr{A}_2 = \{ \{a\} , \{a, b\} \} A2={{a},{a,b}}

集族 A 2 \mathscr{A}_2 A2 包含 单元集 { a } \{a\} {a} , 2 元集 { a , b } \{a, b\} {a,b} ;

A 3 = P ( A ) = { ∅ , { a } , { b } , { a , b } } \mathscr{A}_3 = P(A) = \{ \varnothing , \{a\} , \{b\} , \{a, b\} \} A3=P(A)={,{a},{b},{a,b}}

集族 A 3 \mathscr{A}_3 A3 包含 空集 ∅ \varnothing , 单元集 { a } \{a\} {a} , 单元集 { b } \{b\} {b} , 2 元集 { a , b } \{a, b\} {a,b} ; 这是 集合 A A A 的 幂集 ;


③ 列举出集族 A 1 \mathscr{A}_1 A1 上的包含关系 :

⊆ 1 = I A 1 ∪ { &lt; ∅ , { a } &gt; , &lt; ∅ , { b } &gt; } \subseteq_1 = I_{\mathscr{A}1} \cup \{ &lt;\varnothing , \{a\}&gt; , &lt;\varnothing , \{b\}&gt; \} 1=IA1{<,{a}>,<,{b}>}

⊆ 1 \subseteq_1 1 是集合 A 1 \mathscr{A}1 A1 上的偏序关系 ;

即 分析 空集 ∅ \varnothing , 单元集 { a } \{a\} {a} , 单元集 { b } \{b\} {b} 三个 集合之间的包含关系 :

  • 1.恒等关系 I A 1 I_{\mathscr{A}1} IA1 : &lt; { a } , { a } &gt; 和 &lt; { b } , { b } &gt; &lt;\{a\} , \{a\}&gt; 和 &lt;\{b\} , \{b\}&gt; <{a},{a}><{b},{b}> , 集合上的恒等关系 , 每个集合 肯定 自己包含自己 ;
  • 2. &lt; ∅ , { a } &gt; &lt;\varnothing , \{a\}&gt; <,{a}> : 空集 肯定 包含于 集合 { a } \{a\} {a} ;
  • 3. &lt; ∅ , { b } &gt; &lt;\varnothing , \{b\}&gt; <,{b}> : 空集 肯定 包含于 集合 { b } \{b\} {b} ;
  • 4.总结 : 这些包含关系 的性质分析 :
    • ① 自反 : 每个元素自己 包含 自己 , A ⊆ A A \subseteq A AA , 包含关系具有 自反性质 ;
    • ② 反对称 : 如果 集合 A ⊆ B A \subseteq B AB , B ⊆ A B \subseteq A BA , 那么 A = B A = B A=B , 显然 包含关系 具有反对称性质 ;
    • ③ 传递 : 如果 A ⊆ B A \subseteq B AB , 并且 A ⊆ C A \subseteq C AC , 那么有 A ⊆ C A \subseteq C AC , 包含关系 具有传递性质 ;

④ 列举出集族 A 2 \mathscr{A}_2 A2 上的包含关系 :

⊆ 2 = I A 2 ∪ { &lt; { a } , { a , b } &gt; \subseteq_2 = I_{\mathscr{A}2} \cup \{ &lt;\{a\} , \{a, b\}&gt; 2=IA2{<{a},{a,b}>

⊆ 2 \subseteq_2 2 是集合 A 2 \mathscr{A}2 A2 上的偏序关系 ;


⑤ 列举出集族 A 3 \mathscr{A}_3 A3 上的包含关系 :

⊆ 3 = I A 3 ∪ { &lt; ∅ , { a } &gt; , &lt; ∅ , { b } &gt; , &lt; ∅ , { a , b } &gt; , &lt; { a } , { a , b } &gt; , &lt; { b } , { a , b } &gt; } \subseteq_3 = I_{\mathscr{A}3} \cup \{ &lt;\varnothing , \{a\}&gt; , &lt;\varnothing , \{b\}&gt;, &lt;\varnothing , \{a, b\}&gt; , &lt;\{a\} , \{a, b\}&gt; , &lt;\{b\} , \{a, b\}&gt; \} 3=IA3{<,{a}>,<,{b}>,<,{a,b}>,<{a},{a,b}>,<{b},{a,b}>}

⊆ 3 \subseteq_3 3 是集合 A 3 \mathscr{A}_3 A3 上的偏序关系 ;




5. 加细关系



( 1 ) 加细关系 说明


偏序集示例 5 ( 加细关系 ⪯ 加 细 \preceq_{加细} 是 偏序关系 ) :

  • 1.加细关系描述 : A ̸ = ∅ A \not= \varnothing A̸= , π \pi π 是 由 A A A 的 一些划分 组成的集合 ;

⪯ 加 细 = { &lt; x , y &gt; ∣ x , y ∈ π ∧ x 是 y 的 加 细 } \preceq_{加细} = \{&lt;x , y&gt; | x , y \in \pi \land x 是 y 的 加细\} ={<x,y>x,yπxy}

  • 2.划分 : 划分 是 一个 集族 ( 集合的集合 ) , 其元素是集合 又叫 划分快 , 其中 每个元素(集族中的元素)集合 中的 元素 是 非空集合 A A A 的元素 ;
    • ① 该集族不包含空集 ;
    • ② 该集族中任意两个集合都不想交 ;
    • ③ 该集族中 所有 元素 取并集 , 得到 集合 A A A ;



( 2 ) 加细关系 分析


分析 集合的 划分之间 的 加细 关系 :

① 集合 A = { a , b , c } A = \{a, b, c\} A={a,b,c} , 下面的 划分 和 加细 都基于 该 集合 进行分析 ;


② 下面 列出集合 A A A 的 5 个划分 :

划分 1 : 对应 1 个等价关系 , 分成 1 类 ;
A 1 = { { a , b , c } } \mathscr{A}_1 =\{ \{ a, b, c \} \} A1={{a,b,c}}

划分 2 : 对应 2 个等价关系 , 分成 2 类 ;
A 2 = { { a } , { b , c } } \mathscr{A}_2 = \{ \{ a \} , \{ b, c \} \} A2={{a},{b,c}}

划分 3 : 对应 2 个等价关系 , 分成 2 类 ;
A 3 = { { b } , { a , c } } \mathscr{A}_3 = \{ \{ b \} , \{ a, c \} \} A3={{b},{a,c}}

划分 4 : 对应 2 个等价关系 , 分成 2 类 ;
A 4 = { { c } , { a , b } } \mathscr{A}_4 = \{ \{ c \} , \{ a, b \}\} A4={{c},{a,b}}

划分 5 : 对应 3 个等价关系 , 分成 3 类 ; 每个元素自己自成一类
A 5 = { { a } , { b } , { c } } \mathscr{A}_5 = \{ \{ a \} , \{ b \}, \{ c \} \} A5={{a},{b},{c}}

③ 下面 列出要分析的几个由划分组成的集合 :

集合 1 :
π 1 = { A 1 , A 2 } \pi_1 = \{ \mathscr{A}_1, \mathscr{A}_2 \} π1={A1,A2}

集合 2 :
π 2 = { A 2 , A 3 } \pi_2 = \{ \mathscr{A}_2, \mathscr{A}_3 \} π2={A2,A3}

集合 3 :
π 3 = { A 1 , A 2 , A 3 , A 4 , A 5 } \pi_3 = \{ \mathscr{A}_1, \mathscr{A}_2, \mathscr{A}_3, \mathscr{A}_4, \mathscr{A}_5 \} π3={A1,A2,A3,A4,A5}

④ 集合 π 1 \pi_1 π1 上的加细关系分析 :

  • 1.自己是自己的加细 : 每个划分 , 自己是自己的加细 , 因此 加细关系中 有 I π 1 I_{\pi 1} Iπ1 , &lt; A 1 , A 1 &gt; &lt;\mathscr{A}_1 , \mathscr{A}_1&gt; <A1,A1> , &lt; A 2 , A 2 &gt; &lt;\mathscr{A}_2 , \mathscr{A}_2&gt; <A2,A2> ;
  • 2.其它加细关系 : A 2 \mathscr{A}_2 A2 划分中的 每个划分块 , 都是 A 1 \mathscr{A}_1 A1 划分 中块 的某个划分块的子集合 , 因此有 A 2 \mathscr{A}_2 A2 A 1 \mathscr{A}_1 A1 的加细 , 记做 &lt; A 2 , A 1 &gt; &lt;\mathscr{A}_2, \mathscr{A}_1&gt; <A2,A1> ;
  • 3.加细的定义 : A 1 \mathscr{A}_1 A1 A 2 \mathscr{A}_2 A2 都是集合 A A A 的划分, A 2 \mathscr{A}_2 A2 中的 每个划分块 , 都含于 A 1 \mathscr{A}_1 A1 中的某个划分块中 , 则称 A 2 \mathscr{A}_2 A2 A 1 \mathscr{A}_1 A1 的加细 ;

- 4.加细关系列举 :
⪯ 1 = I π 1 ∪ { &lt; A 2 , A 1 &gt; } \preceq_1 = I_{\pi 1} \cup \{ &lt;\mathscr{A}_2, \mathscr{A}_1&gt; \} 1=Iπ1{<A2,A1>}


⑤ 集合 π 2 \pi_2 π2 上的加细关系分析 :

  • 1.自己是自己的加细 : 每个划分 , 自己是自己的加细 , 因此 加细关系中 有 I π 2 I_{\pi 2} Iπ2 , &lt; A 3 , A 3 &gt; &lt;\mathscr{A}_3 , \mathscr{A}_3&gt; <A3,A3> , &lt; A 2 , A 2 &gt; &lt;\mathscr{A}_2 , \mathscr{A}_2&gt; <A2,A2> ;
  • 2.其它加细关系 : A 2 \mathscr{A}_2 A2 A 3 \mathscr{A}_3 A3 这两个划分互相不是加细 , 因此 该集合中没有其它加细关系 ;

- 4.加细关系列举 :
⪯ 2 = I π 2 \preceq_2 = I_{\pi 2} 2=Iπ2


⑥ 集合 π 3 \pi_3 π3 上的加细关系分析 :

  • 1.自己是自己的加细 : 每个划分 , 自己是自己的加细 , 因此 加细关系中 有 I π 3 I_{\pi 3} Iπ3 , &lt; A 1 , A 1 &gt; &lt;\mathscr{A}_1 , \mathscr{A}_1&gt; <A1,A1> , &lt; A 2 , A 2 &gt; &lt;\mathscr{A}_2 , \mathscr{A}_2&gt; <A2,A2>, &lt; A 3 , A 3 &gt; &lt;\mathscr{A}_3 , \mathscr{A}_3&gt; <A3,A3>, &lt; A 4 , A 4 &gt; &lt;\mathscr{A}_4 , \mathscr{A}_4&gt; <A4,A4>, &lt; A 5 , A 5 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_5&gt; <A5,A5> ;
  • 2.其它加细关系 :
    • ① 与 A 5 \mathscr{A}_5 A5 划分相关的加细 : A 5 \mathscr{A}_5 A5 是划分最细的 等价关系 , A 5 \mathscr{A}_5 A5 是其它所有 划分 的加细 , 因此有 &lt; A 5 , A 4 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_4&gt; <A5,A4> , &lt; A 5 , A 3 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_3&gt; <A5,A3> , &lt; A 5 , A 2 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_2&gt; <A5,A2> , &lt; A 5 , A 1 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_1&gt; <A5,A1> ;
    • ② 与 A 1 \mathscr{A}_1 A1 划分相关的加细 : A 1 \mathscr{A}_1 A1 是划分最粗的 等价关系 , 所有的划分 都是 A 1 \mathscr{A}_1 A1 的加细 , 因此有 &lt; A 5 , A 1 &gt; &lt;\mathscr{A}_5 , \mathscr{A}_1&gt; <A5,A1> , &lt; A 4 , A 1 &gt; &lt;\mathscr{A}_4 , \mathscr{A}_1&gt; <A4,A1> , &lt; A 3 , A 1 &gt; &lt;\mathscr{A}_3 , \mathscr{A}_1&gt; <A3,A1> , &lt; A 2 , A 1 &gt; &lt;\mathscr{A}_2 , \mathscr{A}_1&gt; <A2,A1> ;
  • 4.加细关系列举 :

⪯ 3 = I π 3 ∪ { &lt; A 5 , A 4 &gt; , &lt; A 5 , A 3 &gt; , &lt; A 5 , A 2 &gt; , &lt; A 5 , A 1 &gt; , &lt; A 4 , A 1 &gt; , &lt; A 3 , A 1 &gt; , &lt; A 2 , A 1 &gt; } \preceq_3 = I_{\pi 3} \cup \{ &lt;\mathscr{A}_5 , \mathscr{A}_4&gt; , &lt;\mathscr{A}_5 , \mathscr{A}_3&gt; , &lt;\mathscr{A}_5 , \mathscr{A}_2&gt; , &lt;\mathscr{A}_5 , \mathscr{A}_1&gt; , &lt;\mathscr{A}_4 , \mathscr{A}_1&gt;, &lt;\mathscr{A}_3 , \mathscr{A}_1&gt;, &lt;\mathscr{A}_2 , \mathscr{A}_1&gt; \} 3=Iπ3{<A5,A4>,<A5,A3>,<A5,A2>,<A5,A1>,<A4,A1>,<A3,A1>,<A2,A1>}


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/200779?site
推荐阅读
相关标签
  

闽ICP备14008679号