赞
踩
slice的定义在$GOROOT/src/runtime/slice.go
type slice struct {
array unsafe.Pointer
len int
cap int
}
array
指针指向底层数组, len
表示切片长度, cap
表示底层数组容量
//make
slice := make([]int, 5, 10)
//array
array := [10]int{}
slice := array[0:5]
当slice通过数组切分时,两者会共用内存空间,此时slice[0] == array[5] : true
,这个特性需要特别注意,尤其是在同时处理数组和slice的过程中,如我们操作
slice[1] == array[6] : truearray[5] = 8
,那么slice[0]
此时也是8
当我们使用make
方式进行切片初始化的时候经过了哪些处理呢?
//make
slice := make([]int, 5, 10)
通过gdb
断点可以看到,使用到了slice.go
文件中的makeslice()
方法,如下:
func makeslice(et *_type, len, cap int) unsafe.Pointer { mem, overflow := math.MulUintptr(et.size, uintptr(cap)) if overflow || mem > maxAlloc || len < 0 || len > cap { // NOTE: Produce a 'len out of range' error instead of a // 'cap out of range' error when someone does make([]T, bignumber). // 'cap out of range' is true too, but since the cap is only being // supplied implicitly, saying len is clearer. // See golang.org/issue/4085. mem, overflow := math.MulUintptr(et.size, uintptr(len)) if overflow || mem > maxAlloc || len < 0 { panicmakeslicelen() } panicmakeslicecap() } //以上是对内存溢出情况对panic处理 return mallocgc(mem, et, true) }
slice扩容的方法定义在$GOROOT/src/runtime/slice.go
的growslice
方法中。
newcap := old.cap doublecap := newcap + newcap if cap > doublecap { newcap = cap } else { if old.cap < 1024 { newcap = doublecap } else { // Check 0 < newcap to detect overflow // and prevent an infinite loop. for 0 < newcap && newcap < cap { newcap += newcap / 4 } // Set newcap to the requested cap when // the newcap calculation overflowed. if newcap <= 0 { newcap = cap } } }
通过代码来看下slice普通扩容过程中len、cap以及内存分配情况,如下:
// 普通扩容情况,这里是int32类型
func slice() {
slice := make([]int32, 0)
for i := 0; i < 10; i++ {
fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",
i,
len(slice),
cap(slice),
&slice,
slice)
slice = append(slice, int32(i))
}
}
输出日志如下:
seq=0, len=0, cap=0, ptr=0xc00011a018 slice=[]int32{}
seq=1, len=1, cap=2, ptr=0xc00011a018 slice=[]int32{0}
seq=2, len=2, cap=2, ptr=0xc00011a018 slice=[]int32{0, 1}
seq=3, len=3, cap=4, ptr=0xc00011a018 slice=[]int32{0, 1, 2}
seq=4, len=4, cap=4, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3}
seq=5, len=5, cap=8, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3, 4}
seq=6, len=6, cap=8, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3, 4, 5}
seq=7, len=7, cap=8, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3, 4, 5, 6}
seq=8, len=8, cap=8, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7}
seq=9, len=9, cap=16, ptr=0xc00011a018 slice=[]int32{0, 1, 2, 3, 4, 5, 6, 7, 8}
日志解释:
seq
是执行次序len
是当前已使用空间cap
是当前全部容量ptr
是切片的指针slice
是切片的内容
借助benchmark
来查看下内存分配情况:
% go test -bench=SliceExpand -benchmem
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12 6996427 144.7 ns/op 248 B/op 5 allocs/op
PASS
ok program/slice 1.195s
5 allocs/op表明10次循环过程中进行了5次的内存分配,其实这便是cap的扩容过程,即0 -> 1 -> 2 -> 4 -> 8 -> 16
的5次扩容的内存操作。
对于一些特殊类型,出于内存对齐充分利用的考虑,扩容过程中需要进行特殊处理,下面是特殊处理扩容的策略代码,其中最主要的是roundupsize()
方法,它在本地存储了各长度的内存对其策略,根据type类型的size来指定扩容情况,这样是对内存友好的。
// Specialize for common values of et.size. // For 1 we don't need any division/multiplication. // For sys.PtrSize, compiler will optimize division/multiplication into a shift by a constant. // For powers of 2, use a variable shift. switch { case et.size == 1: lenmem = uintptr(old.len) newlenmem = uintptr(cap) capmem = roundupsize(uintptr(newcap)) overflow = uintptr(newcap) > maxAlloc newcap = int(capmem) case et.size == sys.PtrSize: lenmem = uintptr(old.len) * sys.PtrSize newlenmem = uintptr(cap) * sys.PtrSize capmem = roundupsize(uintptr(newcap) * sys.PtrSize) overflow = uintptr(newcap) > maxAlloc/sys.PtrSize newcap = int(capmem / sys.PtrSize) case isPowerOfTwo(et.size): var shift uintptr if sys.PtrSize == 8 { // Mask shift for better code generation. shift = uintptr(sys.Ctz64(uint64(et.size))) & 63 } else { shift = uintptr(sys.Ctz32(uint32(et.size))) & 31 } lenmem = uintptr(old.len) << shift newlenmem = uintptr(cap) << shift capmem = roundupsize(uintptr(newcap) << shift) overflow = uintptr(newcap) > (maxAlloc >> shift) newcap = int(capmem >> shift) default: lenmem = uintptr(old.len) * et.size newlenmem = uintptr(cap) * et.size capmem, overflow = math.MulUintptr(et.size, uintptr(newcap)) capmem = roundupsize(capmem) newcap = int(capmem / et.size) } // Returns size of the memory block that mallocgc will allocate if you ask for the size. func roundupsize(size uintptr) uintptr { if size < _MaxSmallSize { if size <= smallSizeMax-8 { return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]]) } else { return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]]) } } if size+_PageSize < size { return size } return alignUp(size, _PageSize) }
通过代码来看下slice特殊扩容过程中len、cap以及内存分配情况,如下:
// 特殊扩容情况,这里是int8类型
func slice() {
slice := make([]int8, 0)
for i := 0; i < 10; i++ {
fmt.Printf("seq=%v, len=%v, cap=%v,\t ptr=%p \t slice=%#v \n",
i,
len(slice),
cap(slice),
&slice,
slice)
slice = append(slice, int8(i))
}
}
输出日志如下:
seq=0, len=0, cap=0, ptr=0xc0000a8018 slice=[]int8{}
seq=1, len=1, cap=8, ptr=0xc0000a8018 slice=[]int8{0}
seq=2, len=2, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1}
seq=3, len=3, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2}
seq=4, len=4, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3}
seq=5, len=5, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3, 4}
seq=6, len=6, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3, 4, 5}
seq=7, len=7, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3, 4, 5, 6}
seq=8, len=8, cap=8, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7}
seq=9, len=9, cap=16, ptr=0xc0000a8018 slice=[]int8{0, 1, 2, 3, 4, 5, 6, 7, 8}
借助benchmark
来查看下内存分配情况:
% go test -bench=SliceExpand -benchmem
goos: darwin
goarch: amd64
pkg: program/slice
cpu: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
BenchmarkSliceExpand-12 25947428 47.71 ns/op 24 B/op 2 allocs/op
PASS
ok program/slice 2.259s
2 allocs/op表明10次循环过程中进行了2次的内存分配,其实这便是cap的扩容过程,即0 -> 8 -> 16
的2次扩容的内存操作。
roundupsize
函数扩容,按照特殊处理的cap扩容减少了内存操作次数可以使用如下格式进行切片的使用和截取
语法 | 示例 |
---|---|
make[type, len, cap] | sliceA := make([]int, 5, 10) //length = 5; capacity = 10 |
slice[start : end] | sliceB := sliceA[0:5] //length = 5; capacity = 10 |
slice[start : ] | sliceC := sliceA[0:] //length = 5; capacity = 10 |
slice[: end ] | sliceD := sliceA[:5] //length = 5; capacity = 10 |
slice[start : end : cap] | sliceE := sliceA[0:5:5] //length = 5; capacity = 5 |
《Go专家编程》
Go slice扩容深度分析(来自掘金文章)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。