当前位置:   article > 正文

代码随想录算法训练营Day39 | 动态规划(2/17) LeetCode 62.不同路径 63. 不同路径 II

代码随想录算法训练营Day39 | 动态规划(2/17) LeetCode 62.不同路径 63. 不同路径 II

来到动态规划的第二天练习了!

第一题

62. Unique Paths

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 10^9.

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

可以用递归的办法,很简洁的写出代码,但是会超时。

  1. class Solution:
  2. def uniquePaths(self, m: int, n: int) -> int:
  3. if m == 1 or n == 1:
  4. return 1
  5. return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)

用动态规划写出的代码如下:

  1. class Solution:
  2. def uniquePaths(self, m: int, n: int) -> int:
  3. dp = [[0] * n for _ in range(m)]
  4. for i in range(m):
  5. dp[i][0] = 1
  6. for j in range(n):
  7. dp[0][j] = 1
  8. for i in range(1, m):
  9. for j in range(1, n):
  10. dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
  11. return dp[m - 1][n - 1]

第二题

63. Unique Paths II

You are given an m x n integer array grid. There is a robot initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

An obstacle and space are marked as 1 or 0 respectively in grid. A path that the robot takes cannot include any square that is an obstacle.

Return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The testcases are generated so that the answer will be less than or equal to 2 * 10^9.

这道题和上一题不同的是,加了障碍,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

  1. if obstacleGrid[i][j] == 0:
  2. dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

所以完整代码为:

  1. class Solution:
  2. def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
  3. m = len(obstacleGrid)
  4. n = len(obstacleGrid[0])
  5. if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
  6. return 0
  7. dp = [[0] * n for _ in range(m)]
  8. for i in range(m):
  9. if obstacleGrid[i][0] == 0:
  10. dp[i][0] = 1
  11. else:
  12. break
  13. for j in range(n):
  14. if obstacleGrid[0][j] == 0:
  15. dp[0][j] = 1
  16. else:
  17. break
  18. for i in range(1, m):
  19. for j in range(1, n):
  20. if obstacleGrid[i][j] == 1:
  21. continue
  22. dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
  23. return dp[m - 1][n - 1]

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/212011
推荐阅读
相关标签
  

闽ICP备14008679号