赞
踩
参考博客:https://www.yuque.com/huangzhongqing/pcl/kg7wvi#peMqz
https://blog.csdn.net/lizhengze1117/article/details/89034332
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等。
#include <iostream> #include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/sample_consensus/method_types.h> //随机参数估计方法头文件 #include <pcl/sample_consensus/model_types.h> //模型定义头文件 #include <pcl/segmentation/sac_segmentation.h> //基于采样一致性分割的类的头文件 int main(int argc, char **argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // 填充点云 cloud->width = 15; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); // 生成数据,采用随机数填充点云的x,y坐标,都处于z为1的平面上 for (size_t i = 0; i < cloud->points.size(); ++i) { cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f); cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f); cloud->points[i].z = 1.0; } // 设置几个局外点,即重新设置几个点的z值,使其偏离z为1的平面 cloud->points[0].z = 2.0; cloud->points[3].z = -2.0; cloud->points[6].z = 4.0; std::cerr << "Point cloud data: " << cloud->points.size() << " points" << std::endl; //打印 for (size_t i = 0; i < cloud->points.size(); ++i) std::cerr << " " << cloud->points[i].x << " " << cloud->points[i].y << " " << cloud->points[i].z << std::endl; //创建分割时所需要的模型系数对象,coefficients及存储内点的点索引集合对象inliers pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers(new pcl::PointIndices); // 创建分割对象 pcl::SACSegmentation<pcl::PointXYZ> seg; // 可选择配置,设置模型系数需要优化 seg.setOptimizeCoefficients(true); // 必要的配置,设置分割的模型类型,所用的随机参数估计方法,距离阀值,输入点云 seg.setModelType(pcl::SACMODEL_PLANE); //设置模型类型 seg.setMethodType(pcl::SAC_RANSAC); //设置随机采样一致性方法类型 seg.setDistanceThreshold(0.01); //设定距离阀值,距离阀值决定了点被认为是局内点是必须满足的条件 //表示点到估计模型的距离最大值, seg.setInputCloud(cloud); //引发分割实现,存储分割结果到点几何inliers及存储平面模型的系数coefficients seg.segment(*inliers, *coefficients); if (inliers->indices.size() == 0) { PCL_ERROR("Could not estimate a planar model for the given dataset."); return (-1); } //打印出平面模型 std::cerr << "Model coefficients: " << coefficients->values[0] << " " << coefficients->values[1] << " " << coefficients->values[2] << " " << coefficients->values[3] << std::endl; std::cerr << "Model inliers: " << inliers->indices.size() << std::endl; for (size_t i = 0; i < inliers->indices.size(); ++i) std::cerr << inliers->indices[i] << " " << cloud->points[inliers->indices[i]].x << " " << cloud->points[inliers->indices[i]].y << " " << cloud->points[inliers->indices[i]].z << std::endl; return (0); }
#include <pcl/ModelCoefficients.h> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/filters/extract_indices.h> #include <pcl/filters/passthrough.h> #include <pcl/features/normal_3d.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/visualization/pcl_visualizer.h> // 可视化 typedef pcl::PointXYZ PointT; int main(int argc, char **argv) { // All the objects needed pcl::PCDReader reader; //PCD文件读取对象 pcl::PassThrough<PointT> pass; //直通滤波对象 pcl::NormalEstimation<PointT, pcl::Normal> ne; //法线估计对象 pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; //分割对象 pcl::PCDWriter writer; //PCD文件读取对象 pcl::ExtractIndices<PointT> extract; //点提取对象 pcl::ExtractIndices<pcl::Normal> extract_normals; ///点提取对象 pcl::search::KdTree<PointT>::Ptr tree(new pcl::search::KdTree<PointT>()); // Datasets pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>); pcl::PointCloud<PointT>::Ptr cloud_filtered(new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); pcl::PointCloud<PointT>::Ptr cloud_filtered2(new pcl::PointCloud<PointT>); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2(new pcl::PointCloud<pcl::Normal>); pcl::ModelCoefficients::Ptr coefficients_plane(new pcl::ModelCoefficients), coefficients_cylinder(new pcl::ModelCoefficients); pcl::PointIndices::Ptr inliers_plane(new pcl::PointIndices), inliers_cylinder(new pcl::PointIndices); // Read in the cloud data reader.read("../table_scene_mug_stereo_textured.pcd", *cloud); std::cerr << "PointCloud has: " << cloud->points.size() << " data points." << std::endl; // 直通滤波,将Z轴不在(0,1.5)范围的点过滤掉,将剩余的点存储到cloud_filtered对象中 pass.setInputCloud(cloud); pass.setFilterFieldName("z"); pass.setFilterLimits(0, 1.5); pass.filter(*cloud_filtered); std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl; // 过滤后的点云进行法线估计,为后续进行基于法线的分割准备数据 ne.setSearchMethod(tree); ne.setInputCloud(cloud_filtered); ne.setKSearch(50); ne.compute(*cloud_normals); // Create the segmentation object for the planar model and set all the parameters seg.setOptimizeCoefficients(true); seg.setModelType(pcl::SACMODEL_NORMAL_PLANE); seg.setNormalDistanceWeight(0.1); seg.setMethodType(pcl::SAC_RANSAC); seg.setMaxIterations(100); seg.setDistanceThreshold(0.03); seg.setInputCloud(cloud_filtered); seg.setInputNormals(cloud_normals); //获取平面模型的系数和处在平面的内点 seg.segment(*inliers_plane, *coefficients_plane); std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl; // 从点云中抽取分割的处在平面上的点集 extract.setInputCloud(cloud_filtered); extract.setIndices(inliers_plane); extract.setNegative(false); // 存储分割得到的平面上的点到点云文件 pcl::PointCloud<PointT>::Ptr cloud_plane(new pcl::PointCloud<PointT>()); extract.filter(*cloud_plane); std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl; writer.write("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false); // 分割得到的平面 // Remove the planar inliers, extract the rest extract.setNegative(true); extract.filter(*cloud_filtered2); extract_normals.setNegative(true); extract_normals.setInputCloud(cloud_normals); extract_normals.setIndices(inliers_plane); extract_normals.filter(*cloud_normals2); // Create the segmentation object for cylinder segmentation and set all the parameters seg.setOptimizeCoefficients(true); //设置对估计模型优化 seg.setModelType(pcl::SACMODEL_CYLINDER); //设置分割模型为圆柱形 seg.setMethodType(pcl::SAC_RANSAC); //参数估计方法 seg.setNormalDistanceWeight(0.1); //设置表面法线权重系数 seg.setMaxIterations(10000); //设置迭代的最大次数10000 seg.setDistanceThreshold(0.05); //设置内点到模型的距离允许最大值 seg.setRadiusLimits(0, 0.1); //设置估计出的圆柱模型的半径的范围 seg.setInputCloud(cloud_filtered2); seg.setInputNormals(cloud_normals2); // Obtain the cylinder inliers and coefficients seg.segment(*inliers_cylinder, *coefficients_cylinder); std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl; // Write the cylinder inliers to disk extract.setInputCloud(cloud_filtered2); extract.setIndices(inliers_cylinder); extract.setNegative(false); pcl::PointCloud<PointT>::Ptr cloud_cylinder(new pcl::PointCloud<PointT>()); extract.filter(*cloud_cylinder); if (cloud_cylinder->points.empty()) std::cerr << "Can't find the cylindrical component." << std::endl; else { std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size() << " data points." << std::endl; writer.write("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false); // 分割得到的平面 } // 可视化 pcl::visualization::PCLVisualizer::Ptr viewer(new pcl::visualization::PCLVisualizer("three 三窗口 ")); int v1(0); //设置左右窗口 int v2(1); int v3(2); viewer->createViewPort(0.0, 0.0, 0.5,1.0, v1); //(Xmin,Ymin,Xmax,Ymax)设置窗口坐标 viewer->createViewPort(0.5, 0.0, 1.0, 0.5, v2); viewer->createViewPort(0.5, 0.5, 1.0, 1.0, v3); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_out_red(cloud, 255, 0, 0); // 显示红色点云 viewer->addPointCloud(cloud, cloud_out_red, "cloud_out1", v1); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_out_green(cloud, 0, 255, 0); // 显示绿色点云 viewer->addPointCloud(cloud_plane, cloud_out_green, "cloud_out2", v2); // 平面 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_out_blue(cloud, 0, 0, 255); // 显示蓝色点云 viewer->addPointCloud(cloud_cylinder, cloud_out_blue, "cloud_out3", v3); // 圆柱 // 1. 阻塞式 viewer->spin(); // 2. 非阻塞式 // while (!viewer->wasStopped()) // { // viewer->spinOnce(); // } return (0); }
#include <pcl/ModelCoefficients.h> #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/filters/extract_indices.h> #include <pcl/filters/voxel_grid.h> #include <pcl/features/normal_3d.h> #include <pcl/kdtree/kdtree.h> #include <pcl/sample_consensus/method_types.h> #include <pcl/sample_consensus/model_types.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/segmentation/extract_clusters.h> /****************************************************************************** 打开点云数据,并对点云进行滤波重采样预处理,然后采用平面分割模型对点云进行分割处理 提取出点云中所有在平面上的点集,并将其存盘 ******************************************************************************/ int main (int argc, char** argv) { // Read in the cloud data pcl::PCDReader reader; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>); reader.read ("../table_scene_lms400.pcd", *cloud); // 点云文件 std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //* // Create the filtering object: downsample the dataset using a leaf size of 1cm pcl::VoxelGrid<pcl::PointXYZ> vg; // VoxelGrid类在输入点云数据上创建3D体素网格(将体素网格视为一组空间中的微小3D框 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>); vg.setInputCloud (cloud); //输入 vg.setLeafSize (0.01f, 0.01f, 0.01f); // setLeafSize (float lx, float ly, float lz) vg.filter (*cloud_filtered); //输出 std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //*滤波后 //创建平面模型分割的对象并设置参数 pcl::SACSegmentation<pcl::PointXYZ> seg; pcl::PointIndices::Ptr inliers (new pcl::PointIndices); pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ()); pcl::PCDWriter writer; seg.setOptimizeCoefficients (true); seg.setModelType (pcl::SACMODEL_PLANE); //分割模型 seg.setMethodType (pcl::SAC_RANSAC); //随机参数估计方法 seg.setMaxIterations (100); //最大的迭代的次数 seg.setDistanceThreshold (0.02); //设置阀值 int i=0, nr_points = (int) cloud_filtered->points.size (); while (cloud_filtered->points.size () > 0.3 * nr_points) // 滤波停止条件 { // Segment the largest planar component from the remaining cloud seg.setInputCloud (cloud_filtered); // 输入 seg.segment (*inliers, *coefficients); if (inliers->indices.size () == 0) { std::cout << "Could not estimate a planar model for the given dataset." << std::endl; break; } pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud (cloud_filtered); extract.setIndices (inliers); extract.setNegative (false); // Get the points associated with the planar surface extract.filter (*cloud_plane);// [平面 std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl; // // 移去平面局内点,提取剩余点云 extract.setNegative (true); extract.filter (*cloud_f); *cloud_filtered = *cloud_f; } // Creating the KdTree object for the search method of the extraction pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud (cloud_filtered); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; //欧式聚类对象 ec.setClusterTolerance (0.02); // 设置近邻搜索的搜索半径为2cm ec.setMinClusterSize (100); //设置一个聚类需要的最少的点数目为100 ec.setMaxClusterSize (25000); //设置一个聚类需要的最大点数目为25000 ec.setSearchMethod (tree); //设置点云的搜索机制 ec.setInputCloud (cloud_filtered); ec.extract (cluster_indices); //从点云中提取聚类,并将点云索引保存在cluster_indices中 //迭代访问点云索引cluster_indices,直到分割出所有聚类 int j = 0; for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>); for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit) cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //* cloud_cluster->width = cloud_cluster->points.size (); cloud_cluster->height = 1; cloud_cluster->is_dense = true; std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl; std::stringstream ss; ss << "../cloud_cluster_" << j << ".pcd"; writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); // 保存文件 j++; } return (0); }
参考博客:https://blog.csdn.net/zhan_zhan1/article/details/104754016
#include <pcl/io/pcd_io.h> #include <pcl/segmentation/conditional_euclidean_clustering.h> #include <iostream> // 如果这个函数返回的是真,这这个候选点将会被加入聚类中 bool customCondition(const pcl::PointXYZ& seedPoint, const pcl::PointXYZ& candidatePoint, float squaredDistance) { // Do whatever you want here.做你想做的条件的筛选 if (candidatePoint.y < seedPoint.y) //如果候选点的Y的值小于种子点的Y值(就是之前被选择为聚类的点),则不满足条件,返回假 return false; return true; } int main(int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) != 0) { return -1; } pcl::ConditionalEuclideanClustering<pcl::PointXYZ> clustering; clustering.setClusterTolerance(0.02); clustering.setMinClusterSize(100); clustering.setMaxClusterSize(25000); clustering.setInputCloud(cloud); //设置每次检测一对点云时的函数 clustering.setConditionFunction(&customCondition); std::vector<pcl::PointIndices> clusters; clustering.segment(clusters); int currentClusterNum = 1; for (std::vector<pcl::PointIndices>::const_iterator i = clusters.begin(); i != clusters.end(); ++i) { pcl::PointCloud<pcl::PointXYZ>::Ptr cluster(new pcl::PointCloud<pcl::PointXYZ>); for (std::vector<int>::const_iterator point = i->indices.begin(); point != i->indices.end(); point++) cluster->points.push_back(cloud->points[*point]); cluster->width = cluster->points.size(); cluster->height = 1; cluster->is_dense = true; if (cluster->points.size() <= 0) break; std::cout << "Cluster " << currentClusterNum << " has " << cluster->points.size() << " points." << std::endl; std::string fileName = "cluster" + boost::to_string(currentClusterNum) + ".pcd"; pcl::io::savePCDFileASCII(fileName, *cluster); currentClusterNum++; } }
如何求解法线:https://cloud.tencent.com/developer/article/1756228
参考博客:https://blog.csdn.net/zhan_zhan1/article/details/104755582?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-3
#include <string> #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/search/organized.h> #include <pcl/search/kdtree.h> #include <pcl/features/normal_3d_omp.h> #include <pcl/filters/conditional_removal.h> #include <pcl/segmentation/extract_clusters.h> #include <pcl/segmentation/impl/extract_clusters.hpp> #include <pcl/features/don.h> // for visualization #include <pcl/visualization/pcl_visualizer.h> #include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); using namespace pcl; using namespace std; pcl::PointCloud<pcl::PointXYZRGB>::Ptr getColoredCloud(pcl::PointCloud<pcl::PointXYZ>::Ptr input_, std::vector <pcl::PointIndices> clusters_, float r, float g, float b) { pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud; if (!clusters_.empty()) { colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared(); srand(static_cast<unsigned int> (time(0))); std::vector<unsigned char> colors; for (size_t i_segment = 0; i_segment < clusters_.size(); i_segment++) { colors.push_back(static_cast<unsigned char> (rand() % 256)); colors.push_back(static_cast<unsigned char> (rand() % 256)); colors.push_back(static_cast<unsigned char> (rand() % 256)); } colored_cloud->width = input_->width; colored_cloud->height = input_->height; colored_cloud->is_dense = input_->is_dense; for (size_t i_point = 0; i_point < input_->points.size(); i_point++) { pcl::PointXYZRGB point; point.x = *(input_->points[i_point].data); point.y = *(input_->points[i_point].data + 1); point.z = *(input_->points[i_point].data + 2); point.r = r; point.g = g; point.b = b; colored_cloud->points.push_back(point); } std::vector< pcl::PointIndices >::iterator i_segment; int next_color = 0; for (i_segment = clusters_.begin(); i_segment != clusters_.end(); i_segment++) { std::vector<int>::iterator i_point; for (i_point = i_segment->indices.begin(); i_point != i_segment->indices.end(); i_point++) { int index; index = *i_point; colored_cloud->points[index].r = colors[3 * next_color]; colored_cloud->points[index].g = colors[3 * next_color + 1]; colored_cloud->points[index].b = colors[3 * next_color + 2]; } next_color++; } } return (colored_cloud); } int main(int argc, char *argv[]) { int VISUAL = 1, SAVE = 0;//0 indicate shows nothing, 1 indicate shows very step output 2 only shows the final results ///The smallest scale to use in the DoN filter. double scale1 = 5, mean_radius; ///The largest scale to use in the DoN filter. double scale2 = 10; ///The minimum DoN magnitude to threshold by double threshold = 0.3; ///segment scene into clusters with given distance tolerance using euclidean clustering double segradius = 10; pcl::PointCloud<PointXYZRGB>::Ptr cloud(new pcl::PointCloud<PointXYZRGB>); pcl::io::loadPCDFile("region_growing_tutorial_.pcd", *cloud); // Create a search tree, use KDTreee for non-organized data. pcl::search::Search<PointXYZRGB>::Ptr tree; if (cloud->isOrganized()) { tree.reset(new pcl::search::OrganizedNeighbor<PointXYZRGB>()); } else { tree.reset(new pcl::search::KdTree<PointXYZRGB>(false)); } // Set the input pointcloud for the search tree tree->setInputCloud(cloud); //caculate the mean radius of cloud and mutilply with corresponding input { int size_cloud = cloud->size(); int step = size_cloud / 10; double total_distance = 0; int i, j = 1; for (i = 0; i < size_cloud; i += step, j++) { std::vector<int> pointIdxNKNSearch(2); std::vector<float> pointNKNSquaredDistance(2); tree->nearestKSearch(cloud->points[i], 2, pointIdxNKNSearch, pointNKNSquaredDistance); total_distance += pointNKNSquaredDistance[1] + pointNKNSquaredDistance[0]; } mean_radius = sqrt((total_distance / j)); cout << "mean radius of cloud is: " << mean_radius << endl; scale1 *= mean_radius;//5*mean_radius scale2 *= mean_radius;//10*mean_radius segradius *= mean_radius; } if (scale1 >= scale2) { cerr << "Error: Large scale must be > small scale!" << endl; exit(EXIT_FAILURE); } // Compute normals using both small and large scales at each point pcl::NormalEstimationOMP<PointXYZRGB, PointNormal> ne; ne.setInputCloud(cloud); ne.setSearchMethod(tree); /** * NOTE: setting viewpoint is very important, so that we can ensure * normals are all pointed in the same direction! */ ne.setViewPoint(std::numeric_limits<float>::max(), std::numeric_limits<float>::max(), std::numeric_limits<float>::max()); // calculate normals with the small scale cout << "Calculating normals for scale1..." << scale1 << endl; pcl::PointCloud<PointNormal>::Ptr normals_small_scale(new pcl::PointCloud<PointNormal>); ne.setNumberOfThreads(4); ne.setRadiusSearch(scale1); ne.compute(*normals_small_scale); // calculate normals with the large scale cout << "Calculating normals for scale2..." << scale2 << endl; pcl::PointCloud<PointNormal>::Ptr normals_large_scale(new pcl::PointCloud<PointNormal>); ne.setNumberOfThreads(4); ne.setRadiusSearch(scale2); ne.compute(*normals_large_scale); //visualize the normals if (VISUAL = 1) { cout << "click q key to quit the visualizer and continue!!" << endl; boost::shared_ptr<pcl::visualization::PCLVisualizer> MView(new pcl::visualization::PCLVisualizer("Showing normals with different scale")); pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> green(cloud, 0, 255, 0); int v1(0), v2(0); MView->createViewPort(0.0, 0.0, 0.5, 1.0, v1); MView->createViewPort(0.5, 0.0, 1.0, 1.0, v2); MView->setBackgroundColor(1, 1, 1); MView->addPointCloud(cloud, green, "small_scale", v1); MView->addPointCloud(cloud, green, "large_scale", v2); MView->addPointCloudNormals<pcl::PointXYZRGB, pcl::PointNormal>(cloud, normals_small_scale, 100, mean_radius * 10, "small_scale_normal"); MView->addPointCloudNormals<pcl::PointXYZRGB, pcl::PointNormal>(cloud, normals_large_scale, 100, mean_radius * 10, "large_scale_normal"); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "small_scale", v1); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "small_scale", v1); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "large_scale", v1); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "large_scale", v1); MView->spin(); } // Create output cloud for DoN results PointCloud<PointNormal>::Ptr doncloud(new pcl::PointCloud<PointNormal>); copyPointCloud<PointXYZRGB, PointNormal>(*cloud, *doncloud); cout << "Calculating DoN... " << endl; // Create DoN operator pcl::DifferenceOfNormalsEstimation<PointXYZRGB, PointNormal, PointNormal> don; don.setInputCloud(cloud); don.setNormalScaleLarge(normals_large_scale); don.setNormalScaleSmall(normals_small_scale); if (!don.initCompute()) { std::cerr << "Error: Could not intialize DoN feature operator" << std::endl; exit(EXIT_FAILURE); } // Compute DoN don.computeFeature(*doncloud);//对输入点集,计算每一个点的DON特征向量,并输出 //输出一些不同的曲率 { cout << "You may have some sense about the input threshold(curvature) next time for your data" << endl; int size_cloud = doncloud->size(); cout << size_cloud << endl; int step = size_cloud / 10; for (int i = 0; i < size_cloud; i += step)cout << " " << doncloud->points[i].curvature << " " << endl; } //show the differences of curvature with both large and small scale if (VISUAL = 1) { cout << "click q key to quit the visualizer and continue!!" << endl; boost::shared_ptr<pcl::visualization::PCLVisualizer> MView(new pcl::visualization::PCLVisualizer("Showing the difference of curvature of two scale")); pcl::visualization::PointCloudColorHandlerGenericField<pcl::PointNormal> handler_k(doncloud, "curvature");//PointCloudColorHandlerGenericField方法是将点云按深度值(“x”、“y”、"z"均可)的差异着以不同的颜色。 MView->setBackgroundColor(1, 1, 1); MView->addPointCloud(doncloud, handler_k); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5); MView->spin(); } // Save DoN features pcl::PCDWriter writer; if (SAVE == 1) writer.write<pcl::PointNormal>("don.pcd", *doncloud, false); // 按大小滤波 cout << "Filtering out DoN mag <= " << threshold << "..." << endl; // 创建条件滤波函数 pcl::ConditionOr<PointNormal>::Ptr range_cond( new pcl::ConditionOr<PointNormal>() ); range_cond->addComparison(pcl::FieldComparison<PointNormal>::ConstPtr( new pcl::FieldComparison<PointNormal>("curvature", pcl::ComparisonOps::GT, threshold)) );//添加比较条件 // Build the filter pcl::ConditionalRemoval<PointNormal> condrem; condrem.setCondition(range_cond); condrem.setInputCloud(doncloud); pcl::PointCloud<PointNormal>::Ptr doncloud_filtered(new pcl::PointCloud<PointNormal>); // Apply filter condrem.filter(*doncloud_filtered); doncloud = doncloud_filtered; // Save filtered output std::cout << "Filtered Pointcloud: " << doncloud->points.size() << " data points." << std::endl; if (SAVE == 1)writer.write<pcl::PointNormal>("don_filtered.pcd", *doncloud, false); //show the results of keeping relative small curvature points if (VISUAL == 1) { cout << "click q key to quit the visualizer and continue!!" << endl; boost::shared_ptr<pcl::visualization::PCLVisualizer> MView(new pcl::visualization::PCLVisualizer("Showing the results of keeping relative small curvature points")); pcl::visualization::PointCloudColorHandlerGenericField<pcl::PointNormal> handler_k(doncloud, "curvature"); MView->setBackgroundColor(1, 1, 1); MView->addPointCloud(doncloud, handler_k); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5); MView->spin(); } // Filter by magnitude cout << "Clustering using EuclideanClusterExtraction with tolerance <= " << segradius << "..." << endl; pcl::search::KdTree<PointNormal>::Ptr segtree(new pcl::search::KdTree<PointNormal>); segtree->setInputCloud(doncloud); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<PointNormal> ec; ec.setClusterTolerance(segradius); ec.setMinClusterSize(50); ec.setMaxClusterSize(100000); ec.setSearchMethod(segtree); ec.setInputCloud(doncloud); ec.extract(cluster_indices); if (VISUAL == 1) {//visualize the clustering results pcl::PointCloud <pcl::PointXYZ>::Ptr tmp_xyz(new pcl::PointCloud<pcl::PointXYZ>); copyPointCloud<pcl::PointNormal, pcl::PointXYZ>(*doncloud, *tmp_xyz); pcl::PointCloud <pcl::PointXYZRGB>::Ptr colored_cloud = getColoredCloud(tmp_xyz, cluster_indices, 0, 255, 0); cout << "click q key to quit the visualizer and continue!!" << endl; boost::shared_ptr<pcl::visualization::PCLVisualizer> MView(new pcl::visualization::PCLVisualizer("visualize the clustering results")); pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgbps(colored_cloud); MView->setBackgroundColor(1, 1, 1); MView->addPointCloud(colored_cloud, rgbps); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3); MView->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5); MView->spin(); } if (SAVE == 1) { int j = 0; for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it, j++) { pcl::PointCloud<PointNormal>::Ptr cloud_cluster_don(new pcl::PointCloud<PointNormal>); for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit) { cloud_cluster_don->points.push_back(doncloud->points[*pit]); } cloud_cluster_don->width = int(cloud_cluster_don->points.size()); cloud_cluster_don->height = 1; cloud_cluster_don->is_dense = true; //Save cluster cout << "PointCloud representing the Cluster: " << cloud_cluster_don->points.size() << " data points." << std::endl; stringstream ss; ss << "don_cluster_" << j << ".pcd"; writer.write<pcl::PointNormal>(ss.str(), *cloud_cluster_don, false); } } }
超体素:https://blog.csdn.net/studyeboy/article/details/93981017
CIELAB颜色空间:https://blog.csdn.net/gdymind/article/details/82357139
参考博客:https://cloud.tencent.com/developer/article/1555179
参考博客:https://blog.csdn.net/wxc_1998/article/details/107010826
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。