当前位置:   article > 正文

图像处理的滤镜算法_图片滤镜实现原理

图片滤镜实现原理

灰度滤镜
将颜色的RGB设置为相同的值即可使得图片为灰色,一般处理方法有: 1、取三种颜色的平均值 2、取三种颜色的最大值(最小值) 3、加权平均值:0.3R + 0.59G + 0.11*B

for(var i = 0; i < data.length; i+=4) {
     var grey = (data[i] + data[i+1] + data[i+2]) / 3;
     data[i] = data[i+1] = data[i+2] = grey;
}
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述

黑白滤镜
顾名思义,就是图片的颜色只有黑色和白色,可以计算rgb的平均值arg,arg>=100,r=g=b=255,否则均为0

 for(var i = 0; i < data.length; i += 4) {
         var avg = (data[i] + data[i+1] + data[i+2]) / 3;
         data[i] = data[i+1] = data[i+2] = avg >= 100 ? 255 : 0;
    }
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述
反向滤镜
就是RGB三种颜色分别取255的差值。

  for(var i = 0; i < data.length; i+= 4) {
          data[i] = 255 - data[i];
          data[i + 1] = 255 - data[i + 1];
          data[i + 2] = 255 - data[i + 2];
    }
  • 1
  • 2
  • 3
  • 4
  • 5

image.png
去色滤镜
rgb三种颜色取三种颜色的最值的平均值。

for(var i = 0; i < data.length; i++) {
   var avg = Math.floor((Math.min(data[i], data[i+1], data[i+2]) + Math.max(data[i], data[i+1], data[i+2])) / 2 );
   data[i] = data[i+1] = data[i+2] = avg;
}
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述
单色滤镜
就是只保留一种颜色,其他颜色设为0

for(var i = 0; i < canvas.height * canvas.width; i++) {
    data[i*4 + 2] = 0;
    data[i*4 + 1] = 0;
}
  • 1
  • 2
  • 3
  • 4

在这里插入图片描述
高斯模糊滤镜
高斯模糊的原理就是根据正态分布使得每个像素点周围的像素点的权重不一致,将各个权重(各个权重值和为1)与对应的色值相乘,所得结果求和为中心像素点新的色值。我们需要了解的高斯模糊的公式:
在这里插入图片描述

function gaussBlur(imgData, radius, sigma) {
    var pixes = imgData.data,
        height = imgData.height,
        width = imgData.width,
        radius = radius || 5;
        sigma = sigma || radius / 3;
    
    var gaussEdge = radius * 2 + 1;

    var gaussMatrix = [],
        gaussSum = 0,
        a = 1 / (2 * sigma * sigma * Math.PI),
        b = -a * Math.PI;
    
    for(var i = -radius; i <= radius; i++) {
        for(var j = -radius; j <= radius; j++) {
            var gxy = a * Math.exp((i * i + j * j) * b);
            gaussMatrix.push(gxy);
            gaussSum += gxy;
        }
    }
    var gaussNum = (radius + 1) * (radius + 1);
    for(var i = 0; i < gaussNum; i++) {
        gaussMatrix[i] /= gaussSum;
    }

    for(var x = 0; x < width; x++) {
        for(var y = 0; y < height; y++) {
            var r = g = b = 0;
            for(var i = -radius; i<=radius; i++) {
                var m = handleEdge(i, x, width);
                for(var j = -radius; j <= radius; j++) {
                    var mm = handleEdge(j, y, height);
                    var currentPixId = (mm * width + m) * 4;
                    var jj = j + radius;
                    var ii = i + radius;
                    r += pixes[currentPixId] * gaussMatrix[jj * gaussEdge + ii];
                    g += pixes[currentPixId + 1] * gaussMatrix[jj * gaussEdge + ii];
                    b += pixes[currentPixId + 2] * gaussMatrix[jj * gaussEdge + ii];
                }
            }
            var pixId = (y * width + x) * 4;

            pixes[pixId] = ~~r;
            pixes[pixId + 1] = ~~g;
            pixes[pixId + 2] = ~~b;
        }
    }
    imgData.data = pixes;
    return imgData;
}

function handleEdge(i, x, w) {
    var m = x + i;
    if(m < 0) {
        m = -m;
    } else if(m >= w) {
        m = w + i -x;
    }
    return m;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

在这里插入图片描述
怀旧滤镜
怀旧滤镜公式
在这里插入图片描述

for(var i = 0; i < imgData.height * imgData.width; i++) {
    var r = imgData.data[i*4],
        g = imgData.data[i*4+1],
        b = imgData.data[i*4+2];

    var newR = (0.393 * r + 0.769 * g + 0.189 * b);
    var newG = (0.349 * r + 0.686 * g + 0.168 * b);
    var newB = (0.272 * r + 0.534 * g + 0.131 * b);
    var rgbArr = [newR, newG, newB].map((e) => {
        return e < 0 ? 0 : e > 255 ? 255 : e;
    });
    [imgData.data[i*4], imgData.data[i*4+1], imgData.data[i*4+2]] = rgbArr;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述
熔铸滤镜
公式: r = r128/(g+b +1); g = g128/(r+b +1); b = b*128/(g+r +1);

for(var i = 0; i < imgData.height * imgData.width; i++) {
    var r = imgData.data[i*4],
        g = imgData.data[i*4+1],
        b = imgData.data[i*4+2];

    var newR = r * 128 / (g + b + 1);
    var newG = g * 128 / (r + b + 1);
    var newB = b * 128 / (g + r + 1);
    var rgbArr = [newR, newG, newB].map((e) => {
        return e < 0 ? 0 : e > 255 ? 255 : e;
    });
    [imgData.data[i*4], imgData.data[i*4+1], imgData.data[i*4+2]] = rgbArr;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

image.png
冰冻滤镜
公式: r = (r-g-b)*3/2; g = (g-r-b)*3/2; b = (b-g-r)*3/2;

for(var i = 0; i < imgData.height * imgData.width; i++) {
    var r = imgData.data[i*4],
        g = imgData.data[i*4+1],
        b = imgData.data[i*4+2];

    var newR = (r - g -b) * 3 /2;
    var newG = (g - r -b) * 3 /2;
    var newB = (b - g -r) * 3 /2;
    var rgbArr = [newR, newG, newB].map((e) => {
        return e < 0 ? 0 : e > 255 ? 255 : e;
    });
    [imgData.data[i*4], imgData.data[i*4+1], imgData.data[i*4+2]] = rgbArr;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述
连环画滤镜
公式: R = |g – b + g + r| * r / 256

G = |b – g + b + r| * r / 256;

B = |b – g + b + r| * g / 256;

for(var i = 0; i < imgData.height * imgData.width; i++) {
    var r = imgData.data[i*4],
        g = imgData.data[i*4+1],
        b = imgData.data[i*4+2];

    var newR = Math.abs(g - b + g + r) * r / 256;
    var newG = Math.abs(b -g + b + r) * r / 256;
    var newB =  Math.abs(b -g + b + r) * g / 256;
    var rgbArr = [newR, newG, newB];
    [imgData.data[i*4], imgData.data[i*4+1], imgData.data[i*4+2]] = rgbArr;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

image.png
褐色滤镜
公式: r = r * 0.393 + g * 0.769 + b * 0.189; g = r * 0.349 + g * 0.686 + b * 0.168; b = r * 0.272 + g * 0.534 + b * 0.131;

for (var i = 0; i < imgData.height * imgData.width; i++) {
    var r = imgData.data[i * 4],
        g = imgData.data[i * 4 + 1],
        b = imgData.data[i * 4 + 2];

    var newR = r * 0.393 + g * 0.769 + b * 0.189;
    var newG = r * 0.349 + g * 0.686 + b * 0.168;
    var newB =  r * 0.272 + g * 0.534 + b * 0.131;
    var rgbArr = [newR, newG, newB];
    [imgData.data[i * 4], imgData.data[i * 4 + 1], imgData.data[i * 4 + 2]] = rgbArr;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

image
红包+折扣,阿里云上云大礼包!
https://promotion.aliyun.com/ntms/yunparter/invite.html?userCode=5wzgtzow
【全民云计算】 云主机低至4折
https://promotion.aliyun.com/ntms/act/qwbk.html?userCode=5wzgtzow
【阿里云新用户】 云通信专享8折
https://www.aliyun.com/acts/alicomcloud/new-discount?userCode=5wzgtzow
【商标注册服务】 低至680
https://tm.aliyun.com/?userCode=5wzgtzow

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/256875
推荐阅读
相关标签
  

闽ICP备14008679号