赞
踩
df_train_X, df_train_Y = data_process(train_n) train_data = lgb.Dataset(df_train_X, label=df_train_Y) param = {'num_leaves': 10, 'num_trees': 50, 'objective': 'regression'} gbm=lgb.train(param, train_data) y_hat=gbm.predict(df_train_X) MAE = np.mean(abs(y_hat - df_train_Y)) MSE = np.mean((y_hat - df_train_Y) ** 2) R2 = 1-np.sum((y_hat - df_train_Y) ** 2)/np.sum((df_train_Y-np.mean(df_train_Y))**2)1.lightgbm 做交叉验证
param = {'num_leaves': [10,20,30,40,50], 'num_trees': [50,100,200,250]} gsearch = GridSearchCV(estimator=lgb.sklearn.LGBMRegressor(n_estimators=100,boosting_type='gbdt', objective='regression'),param_grid = param, scoring='neg_mean_absolute_error', cv=5,verbose = 20) gsearch.fit(df_train_X, df_train_Y) # modelfit(gsearch.best_estimator_, train, predictors) print gsearch.grid_scores_, gsearch.best_params_, gsearch.best_score_
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。