赞
踩
ChatGPT是一种基于语言模型的聊天机器人,它使用了GPT(Generative Pre-trained Transformer)的深度学习架构来生成与用户的对话。GPT是一种使用Transformer编码器和解码器的预训练模型,它已被广泛用于生成自然语言文本的各种应用程序,例如文本生成,机器翻译和语言理解。
在本文中,我们将探讨如何使用Python和PyTorch来训练ChatGPT,以及如何使用已经训练的模型来生成对话。
在训练ChatGPT之前,我们需要准备一个大型的对话数据集。这个数据集应该包含足够的对话,覆盖各种主题和领域,以及各种不同的对话风格。这个数据集可以是从多个来源收集的,例如电影脚本,电视节目,社交媒体上的聊天记录等。
在本文中,我们将使用Cornell Movie Dialogs Corpus,一个包含电影对话的大型数据集。这个数据集包含超过22,000个对话,涵盖了多个主题和风格。
我们可以使用以下代码下载和解压缩Cornell Movie Dialogs Corpus,这个数据集也可以从[这里](https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html)手动下载。
- import os
- import urllib.request
- import zipfile
-
- DATA_URL = 'http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip'
- DATA_DIR = './cornell_movie_dialogs_corpus'
- DATA_FILE = os.path.join(DATA_DIR, 'cornell_movie_dialogs_corpus.zip')
-
- if not os.path.exists(DATA_DIR):
- os.makedirs(DATA_DIR)
-
- if not os.path.exists(DATA_FILE):
- print('Downloading data...')
- urllib.request.urlretrieve(DATA_URL, DATA_FILE)
-
- print('Extracting data...')
- with zipfile.ZipFile(DATA_FILE, 'r') as zip_ref:
- zip_ref.extractall(DATA_DIR)

在准备好数据集之后,我们需要对数据进行预处理,以便将其转换为模型可以处理的格式。在本教程中,我们使用了一个简单的预处理步骤,该步骤包括下列几步:
- import re
- import random
- import numpy as np
- import torch
-
- def load_conversations():
- id2line = {}
- with open(os.path.join(DATA_DIR, 'movie_lines.txt'), errors='ignore') as f:
- for line in f:
- parts = line.strip().split(' +++$+++ ')
- id2line[parts[0]] = parts[4]
-
- inputs = []
- outputs = []
- with open(os.path.join(DATA_DIR, 'movie_conversations.txt'), 'r') as f:
- for line in f:
- parts = line.strip().split(' +++$+++ ')
- conversation = [id2line[id] for id in parts[3][1:-1].split(',')]
- for i in range(len(conversation) - 1):
- inputs.append(conversation[i])
- outputs.append(conversation[i+1])
- return inputs, outputs
-
- def preprocess_sentence(sentence):
- sentence = re.sub(r"([?.!,])", r" \1 ", sentence)
- sentence = re.sub(r"[^a-zA-Z?.!,]+", r" ", sentence)
- sentence = sentence.lower()
- return sentence
-
- def tokenize_sentence(sentence, word2index):
- tokenized = []
- for word in sentence.split(' '):
- if word not in word2index:
- continue
- tokenized.append(word2index[word])
- return tokenized
-
- def preprocess_data(inputs, outputs, max_length=20):
- pairs = []
- for i in range(len(inputs)):
- input_sentence = preprocess_sentence(inputs[i])
- output_sentence = preprocess_sentence(outputs[i])
- pairs.append((input_sentence, output_sentence))
-
- word_counts = {}
- for pair in pairs:
- for sentence in pair:
- for word in sentence.split(' '):
- if word not in word_counts:
- word_counts[word] = 0
- word_counts[word] += 1
-
- word2index = {}
- index2word = {0: '<pad>', 1: '<start>', 2: '<end>', 3: '<unk>'}
- index = 4
- for word, count in word_counts.items():
- if count >= 10:
- word2index[word] = index
- index2word[index] = word
- index += 1
-
- inputs_tokenized = []
- outputs_tokenized = []
- for pair in pairs:
- input_sentence, output_sentence = pair
- input_tokenized = [1] + tokenize_sentence(input_sentence, word2index) + [2]
- output_tokenized = [1] + tokenize_sentence(output_sentence, word2index) + [2]
- if len(input_tokenized) <= max_length and len(output_tokenized) <= max_length:
- inputs_tokenized.append(input_tokenized)
- outputs_tokenized.append(output_tokenized)
-
- inputs_padded = torch.nn.utils.rnn.pad_sequence(inputs_tokenized, batch_first=True, padding_value=0)
- outputs_padded = torch.nn.utils.rnn.pad_sequence(outputs_tokenized, batch_first=True, padding_value=0)
- return inputs_padded, outputs_padded, word2index, index2word

在完成数据预处理之后,我们可以开始训练ChatGPT模型。对于本文中的示例,我们将使用PyTorch深度学习框架来实现ChatGPT模型。
首先,我们需要定义一个Encoder-Decoder模型结构。这个结构包括一个GPT解码器,它将输入的上下文句子转换为一个回答句子。GPT解码器由多个Transformer解码器堆叠而成,每个解码器都包括多头注意力和前馈神经网络层。
-
- import torch.nn as nn
- from transformers import GPT2LMHeadModel
-
- class EncoderDecoder(nn.Module):
- def __init__(self, num_tokens, embedding_dim=256, hidden_dim=512, num_layers=2, max_length=20):
- super().__init__()
-
- self.embedding = nn.Embedding(num_tokens, embedding_dim)
- self.decoder = nn.ModuleList([GPT2LMHeadModel.from_pretrained('gpt2') for _ in range(num_layers)])
- self.max_length = max_length
-
- def forward(self, inputs, targets=None):
- inputs_embedded = self.embedding(inputs)
- outputs = inputs_embedded
- for decoder in self.decoder:
- outputs = decoder(inputs_embedded=outputs)[0]
- return outputs
-
- def generate(self, inputs, temperature=1.0):
- inputs_embedded = self.embedding(inputs)
- input_length = inputs.shape[1]
- output = inputs_embedded
- for decoder in self.decoder:
- output = decoder(inputs_embedded=output)[0][:, input_length-1, :]
- output_logits = output / temperature
- output_probs = nn.functional.softmax(output_logits, dim=-1)
- output_token = torch.multinomial(output_probs, num_samples=1)
- output_token_embedded = self.embedding(output_token)
- output = torch.cat([output, output_token_embedded], dim=1)
- return output[:, input_length:, :]

然后,我们需要定义一个训练函数,该函数将使用梯度下降方法优化模型参数,并将每个epoch的损失和正确率记录到一个日志文件中。
-
- def train(model, inputs, targets, optimizer, criterion):
- model.train()
- optimizer.zero_grad()
- outputs = model(inputs, targets[:, :-1])
- loss = criterion(outputs.reshape(-1, outputs.shape[-1]), targets[:, 1:].reshape(-1))
- loss.backward()
- optimizer.step()
- return loss.item()
-
- def evaluate(model, inputs, targets, criterion):
- model.eval()
- with torch.no_grad():
- outputs = model(inputs, targets[:, :-1])
- loss = criterion(outputs.reshape(-1, outputs.shape[-1]), targets[:, 1:].reshape(-1))
- return loss.item()
-
- def train_model(model, inputs, targets, word2index, index2word, num_epochs=10, batch_size=64, lr=1e-3):
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。