赞
踩
更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验
Redis 是基于内存的数据库,数据存储在内存中,为了避免进程退出导致数据永久丢失,需要定期对内存中的数据以某种形式从内存呢保存到磁盘当中;当 Redis 重启时,利用持久化文件实现数据恢复。
Redis 的持久化主要有以下流程:
上述流程中,数据的传播过程为:客户端内存 -> 服务端内存 -> 系统内存缓冲区 -> 磁盘缓冲区 -> 磁盘
在理想条件下,上述过程是一个正常的保存流程,但是在大多数情况下,我们的机器等等都会有各种各样的故障,这里划分两种情况:
为了应对以上 5 步操作,Redis 提供了两种不同的持久化方式:RDB(Redis DataBase) 和 AOF(Append Only File)。
RDB 是 Redis 默认开启的全量数据快照保存方案:
关于 RDB 的配置均保存在 redis.conf 文件中,可以进行修改
通过 SAVE
命令手动触发 RDB,这种方式会阻塞 Redis 服务器,直到 RDB 文件创建完成,线上禁止使用这种方式
通过 BGSAVE
命令,这种方式会 fork 一个子进程,由子进程负责持久化过程,因此阻塞只会发生在 fork 子进程的时候
注意:
除了上述指令手动执行外,Redis 还可以根据 redis.conf 文件的配置自动触发:
save x y
:表示 x 秒内,至少有 y 个 key 值变化,则触发 bgsaveAOF 是 Redis 默认未开启的持久化策略:
AOF 的持久化实现原理分为四大步骤:
注意:
appendonly yes
即可开启always
同步刷盘:数据可靠,但性能影响大everysec
每秒刷盘:性能适中,最多丢失一秒数据no
系统控制刷盘:性能最好,可靠性差,容易丢失大量数据bgrewriteaof
重写 AOF 文件,用最少命令达到相同效果已知 Redis 通过重新执行一遍 AOF 文件里面的命令进行还原状态,但实际上 Redis 并不是直接执行的:
具体步骤如下:
为了解决 AOF 文件持续追加命令导致 AOF 文件过度膨胀的问题,Redis 提供了 AOF 文件重写功能
例如上述命令在执行重写前,会记录 list
这个 key
的状态,重写前 AOF 要保存这五条命令,重写后只需要一条命令,结果确是等价的。
注意:
触发机制:
bgrewriteaof
,如果当前有正在运行的 rewrite 子进程,则本次的重写会延迟执行,否者直接触发auto-aof-rewrite-min-size 64mb
,若 AOF 文件超过配置大小则会自动触发AOF 重写函数会进行大量的写入操作,调用该函数的线程将被长时间阻塞,所以 Redis 在子进程中执行 AOF 重写操作:
在整个 AOF 重写的过程中,只有信号处理函数的执行过程会对 Redis 主进程造成阻塞,在其他时候都不会阻塞主进程
首先对比一下两种持久化方式的优缺点:
在服务器同时开启了 RDB 和 AOF 的情况下,会优先选择 AOF 方式,若不存在 AOF 文件,则会执行 RDB 恢复。
针对上述 RDB 和 AOF 的持久化原理可知,两者都需要 fork 出子进程,可能会造成主进程的阻塞,因此需要:
除此之外,在线上环境中,如果不是特别敏感的数据或可以通过重新生成的方式恢复数据,则可以关闭持久化
对于其他场景,Redis 在 4.0 引入了 RDB 混合 AOF 的解决方案——混合使用 AOF 日志和内存快照:
aof-use-rdb-preamble yes
当开启混合持久化时,在 AOF 重写日志时,fork 出来的子进程会先将与主线程共享的内存数据以 RDB 的方式写入 AOF,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区的增量命令会以 AOF 的方式写入 AOF 文件,写入完成后,通知主进程将新的含有RDB 格式和 AOF 格式的 AOF 文件替换旧的 AOF 文件。
注意:对于采用混合持久化方案的 AOF 文件,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分则是 AOF 格式的增量数据。
这样的好处在于,由于前半段为 RDB 格式的文件,恢复速度较快,加载完 RDB 的内容后再执行后半部分 AOF 的内容,以减少的丢失数据的风险。
可以通过 Redis 的配置文件设置密码参数,当客户端连接到 Redis 服务器时,需要密码验证:
requirepass
进行配置配置完毕后,重启生效。
也可以通过命令的方式修改:
CONFIG SET requirepass password
AUTH password
注意:
这里修改的密码为 default 用户密码
在 initServer 中会调用 ACLUpdateDefaultUserPassword(server.requirepass) 函数设置 default 用户的密码
/* Set the password for the "default" ACL user. This implements supports for
* requirepass config, so passing in NULL will set the user to be nopass. */
void ACLUpdateDefaultUserPassword(sds password) {
ACLSetUser(DefaultUser,"resetpass",-1);
if (password) {
sds aclop = sdscatlen(sdsnew(">"), password, sdslen(password));
ACLSetUser(DefaultUser,aclop,sdslen(aclop));
sdsfree(aclop);
} else {
ACLSetUser(DefaultUser,"nopass",-1);
}
}
查看 redis.conf 配置:
# IMPORTANT NOTE: starting with Redis 6 "requirepass" is just a compatibility
# layer on top of the new ACL system. The option effect will be just setting
# the password for the default user. Clients will still authenticate using
# AUTH <password> as usually, or more explicitly with AUTH default <password>
# if they follow the new protocol: both will work.
#
# The requirepass is not compatible with aclfile option and the ACL LOAD
# command, these will cause requirepass to be ignored.
#
# requirepass foobared
自 Redis 6.0 起,requirepass
只是针对 default 用户的配置,由于 redis 加载配置后会读取 aclfile,重新新建全局 Users 对象,此举会调用 ACLInitDefaultUser 函数重新新建 nopass 的 default 用户,因此导致配置的 requirepass
失效
根据上述分析,解决方案很明显:
redis-server ./redis.conf
config set requirepass xxx
,然后 acl save
(会写 default 的 user 规则到 aclfile 中)Redis 的 key 存在过期时间,设置命令如下:
expire <key> <n>
:设置 key 在 n 秒后过期pexpire <key> <n>
:设置 key 在 n 毫秒后过期expireat <key> <n>
:设置 key 在某个时间戳(精确到秒)后过期pexpireat <key> <n>
:设置 key 在某个时间戳(精确到毫秒)后过期也可以在 key 创建时直接设置:
set <key> <value> ex <n>
:设置键值对的时候,同时指定过期时间(精确到秒)set <key> <value> px <n>
:设置键值对的时候,同时指定过期时间(精确到毫秒)setex <key> <n> <va1ue>
:设置键值对的时候,同时指定过期时间(精确到秒),该操作是一个原子操作其他相关操作:
persist <key>
:将 key 的过期时间删除TTL <key>
:返回 key 的剩余生存时间(精确到秒)PTTL <key>
:返回 key 的剩余生存时间(精确到毫秒)要想删除一个过期的 key,首先需要判断它是否过期:
Redis 提供了三种过期策略:
而 Redis 的过期删除策略是:惰性删除 + 定期删除
查看 Redis 源码 db.c,其中执行惰性删除的逻辑会反复调用 expireIfNeeded
函数对 key 其进行检查:
/* Return values for expireIfNeeded */ typedef enum { KEY_VALID = 0, /* Could be volatile and not yet expired, non-volatile, or even non-existing key. */ KEY_EXPIRED, /* Logically expired but not yet deleted. */ KEY_DELETED /* The key was deleted now. */ } keyStatus; keyStatus expireIfNeeded(redisDb *db, robj *key, int flags) { if (server.lazy_expire_disabled) return KEY_VALID; // 未设置过期策略直接返回 key 值 if (!keyIsExpired(db,key)) return KEY_VALID; /* If we are running in the context of a replica, instead of * evicting the expired key from the database, we return ASAP: * the replica key expiration is controlled by the master that will * send us synthesized DEL operations for expired keys. The * exception is when write operations are performed on writable * replicas. * * Still we try to return the right information to the caller, * that is, KEY_VALID if we think the key should still be valid, * KEY_EXPIRED if we think the key is expired but don't want to delete it at this time. * * When replicating commands from the master, keys are never considered * expired. */ // 这里说明了,从节点的 key 过期策略是由主节点控制的,如果是在复制主节点的命令时,键永远不会被视为已过期 if (server.masterhost != NULL) { if (server.current_client && (server.current_client->flags & CLIENT_MASTER)) return KEY_VALID; if (!(flags & EXPIRE_FORCE_DELETE_EXPIRED)) return KEY_EXPIRED; } /* In some cases we're explicitly instructed to return an indication of a * missing key without actually deleting it, even on masters. */ if (flags & EXPIRE_AVOID_DELETE_EXPIRED) return KEY_EXPIRED; /* If 'expire' action is paused, for whatever reason, then don't expire any key. * Typically, at the end of the pause we will properly expire the key OR we * will have failed over and the new primary will send us the expire. */ if (isPausedActionsWithUpdate(PAUSE_ACTION_EXPIRE)) return KEY_EXPIRED; /* The key needs to be converted from static to heap before deleted */ int static_key = key->refcount == OBJ_STATIC_REFCOUNT; if (static_key) { key = createStringObject(key->ptr, sdslen(key->ptr)); } /* Delete the key */ deleteExpiredKeyAndPropagate(db,key); if (static_key) { decrRefCount(key); } return KEY_DELETED; }
查看 Redis 源码 expire.c,其中执行定期删除的逻辑在 void activeExpireCycle(int type)
中:
void activeExpireCycle(int type) { /* Adjust the running parameters according to the configured expire * effort. The default effort is 1, and the maximum configurable effort * is 10. */ unsigned long effort = server.active_expire_effort-1, /* Rescale from 0 to 9. */ // 每次循环取出过期键的数量 config_keys_per_loop = ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP + ACTIVE_EXPIRE_CYCLE_KEYS_PER_LOOP/4*effort, // FAST 模式下的执行周期 config_cycle_fast_duration = ACTIVE_EXPIRE_CYCLE_FAST_DURATION + ACTIVE_EXPIRE_CYCLE_FAST_DURATION/4*effort, // SLOW 模式的执行周期 config_cycle_slow_time_perc = ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC + 2*effort, config_cycle_acceptable_stale = ACTIVE_EXPIRE_CYCLE_ACCEPTABLE_STALE- effort; ...........
定期删除的周期配置在 redis.conf 中,其中 hz 10
默认值每秒进行 10 次过期检查
当 Redis 运行内存超过设置的最大内存时,会执行淘汰策略删除符合条件的 key 保障高效运行
最大内存设置:redis.conf 中 maxmemory <bytes>
,若不设置默认无限制(但最大为物理内存的四分之三)
Redis 支持八种淘汰策略:
LRU 全称为 Least Recently Used,最近最少使用,会选择淘汰最近最少使用的数据
传统LRU算法实现:
但是 Redis 的 LRU 算法并不是传统的算法实现,在海量数据下,基于链表的操作会带来额外的内存开销,降低缓存性能
因此,Redis 采用了一种近似 LRU 算法
首先来看一下 Redis 源码中 server.h 中对 redisObject 的定义:
struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;
void *ptr;
};
其中 lru 的值在创建对象时会被初始化,在 object.c 中:
// typedef struct redisObject robj; robj *createObject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = OBJ_ENCODING_RAW; o->ptr = ptr; o->refcount = 1; o->lru = 0; return o; } void initObjectLRUOrLFU(robj *o) { if (o->refcount == OBJ_SHARED_REFCOUNT) return; /* Set the LRU to the current lruclock (minutes resolution), or * alternatively the LFU counter. */ if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { o->lru = (LFUGetTimeInMinutes() << 8) | LFU_INIT_VAL; } else { o->lru = LRU_CLOCK(); } return; }
Redis 在每一个对象的结构体中添加了 lru 字段,用于记录此数据最后一次访问的时间戳,这里是基于全局 LRU 时钟计算的
如果一个 key 被访问了,则会调用 db.c 中的 lookupKey
函数对 lru 字段进行更新:
robj *lookupKey(redisDb *db, robj *key, int flags) { // 通过 dbFind 函数查找给定的键(key)如果找到,则获取键对应的值 dictEntry *de = dbFind(db, key->ptr); robj *val = NULL; if (de) { val = dictGetVal(de); /* Forcing deletion of expired keys on a replica makes the replica * inconsistent with the master. We forbid it on readonly replicas, but * we have to allow it on writable replicas to make write commands * behave consistently. * * It's possible that the WRITE flag is set even during a readonly * command, since the command may trigger events that cause modules to * perform additional writes. */ // 处理键过期的情况 int is_ro_replica = server.masterhost && server.repl_slave_ro; int expire_flags = 0; if (flags & LOOKUP_WRITE && !is_ro_replica) expire_flags |= EXPIRE_FORCE_DELETE_EXPIRED; if (flags & LOOKUP_NOEXPIRE) expire_flags |= EXPIRE_AVOID_DELETE_EXPIRED; if (expireIfNeeded(db, key, expire_flags) != KEY_VALID) { /* The key is no longer valid. */ val = NULL; } } if (val) { /* Update the access time for the ageing algorithm. * Don't do it if we have a saving child, as this will trigger * a copy on write madness. */ // 更新访问时间 if (server.current_client && server.current_client->flags & CLIENT_NO_TOUCH && server.current_client->cmd->proc != touchCommand) flags |= LOOKUP_NOTOUCH; if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){ if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { updateLFU(val); // 策略为 LFU,更新使用频率 } else { val->lru = LRU_CLOCK(); // 策略为 LRU,更新时间戳 } } if (!(flags & (LOOKUP_NOSTATS | LOOKUP_WRITE))) server.stat_keyspace_hits++; /* TODO: Use separate hits stats for WRITE */ } else { if (!(flags & (LOOKUP_NONOTIFY | LOOKUP_WRITE))) notifyKeyspaceEvent(NOTIFY_KEY_MISS, "keymiss", key, db->id); if (!(flags & (LOOKUP_NOSTATS | LOOKUP_WRITE))) server.stat_keyspace_misses++; /* TODO: Use separate misses stats and notify event for WRITE */ } return val; }
当 Redis 进行内存淘汰时,会使用随机采样的方式来淘汰数据,查看源码 evict.c:
struct evictionPoolEntry {
unsigned long long idle; /* Object idle time (inverse frequency for LFU) */
sds key; /* Key name. */
sds cached; /* Cached SDS object for key name. */
int dbid; /* Key DB number. */
int slot; /* Slot. */
};
这里定义了一个淘汰池,所有待淘汰的 key 会通过 evictionPoolPopulate
函数填入:
int evictionPoolPopulate(redisDb *db, kvstore *samplekvs, struct evictionPoolEntry *pool) { int j, k, count; dictEntry *samples[server.maxmemory_samples]; int slot = kvstoreGetFairRandomDictIndex(samplekvs); // 从字典中获取一些键,结果存放到 samples 中,并且返回获取的键的数量。所选取的键的数量不能超过 server.maxmemory_samples count = kvstoreDictGetSomeKeys(samplekvs,slot,samples,server.maxmemory_samples); // 循环采样,对抽样得到的键进行处理 for (j = 0; j < count; j++) { unsigned long long idle; sds key; robj *o; dictEntry *de; de = samples[j]; key = dictGetKey(de); /* If the dictionary we are sampling from is not the main * dictionary (but the expires one) we need to lookup the key * again in the key dictionary to obtain the value object. */ if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) { if (samplekvs != db->keys) de = kvstoreDictFind(db->keys, slot, key); o = dictGetVal(de); } ............
LFU 全称 Least Frequently Used,最近最不常用,LFU 算法是根据数据访问次数来淘汰数据的,它的核心思想是“如果数据过去
被访问多次,那么将来被访问的频率也更高”
传统 LFU 算法实现:
Redis 实现的 LFU 算法也是一种近似 LFU 算法
首先,仍然从 Redis 源码中 server.h 中对 redisObject 的定义入手:
struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or
* LFU data (least significant 8 bits frequency
* and most significant 16 bits access time). */
int refcount;
void *ptr;
};
之前在 LRU 算法原理时我仅仅提到 lru 字段作为 LRU 算法的时间戳来使用,但如果选择 LFU 算法,该字段将被拆分为两部分:
之后仍然是 db.c 中的 lookupKey
函数,这次具体来看 LRU 的更新策略:
if (!hasActiveChildProcess() && !(flags & LOOKUP_NOTOUCH)){
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
updateLFU(val); // 策略为 LFU,更新使用频率
} else {
val->lru = LRU_CLOCK(); // 策略为 LRU,更新时间戳
}
}
更新策略为调用了 updateLFU
:
void updateLFU(robj *val) {
// 根据距离上次访问的时长,衰减访问次数
unsigned long counter = LFUDecrAndReturn(val);
// 根据当前访问更新访问次数
counter = LFULogIncr(counter);
// 更新 lru 变量值
val->lru = (LFUGetTimeInMinutes()<<8) | counter;
}
Redis 执行 LFU 淘汰策略和 LRU 基本类似,也是将所有待淘汰的 key 通过 evictionPoolPopulate
函数填入,区别在于填充策略的选择:
/* Calculate the idle time according to the policy. This is called * idle just because the code initially handled LRU, but is in fact * just a score where a higher score means better candidate. */ if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) { idle = estimateObjectIdleTime(o); } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { /* When we use an LRU policy, we sort the keys by idle time * so that we expire keys starting from greater idle time. * However when the policy is an LFU one, we have a frequency * estimation, and we want to evict keys with lower frequency * first. So inside the pool we put objects using the inverted * frequency subtracting the actual frequency to the maximum * frequency of 255. */ idle = 255-LFUDecrAndReturn(o); } else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) { /* In this case the sooner the expire the better. */ idle = ULLONG_MAX - (long)dictGetVal(de); } else { serverPanic("Unknown eviction policy in evictionPoolPopulate()"); }
将一台 Redis 服务器的数据,复制到其他的 Redis 服务器,前者称为主节点(master),其他服务器称为从节点(slave)。
注意:主从复制的数据流动是单向的,只能从主节点流向从节点
Redis 的主从复制是异步复制,异步分为两个方面:
一主多从:
如果从节点需求大,由于主从同步时,主节点需要发送自己的 RDB 文件给从节点进行同步,若此时从节点数量过多,主节点需要频繁地进行 RDB 操作,会影响主节点的性能。
因此,考虑从节点再做为主节点配置从节点:
全量同步发生在主节点和从节点的第一次同步
因为各种原因 master 服务器与 slave 服务器断开后,slave 服务器在重新连上 master 服务器时会尝试重新获取断开后未同步的数据
即部分同步,或者称为部分复制。
注意:
对于主从同步解决方案,如果主节点因为某种原因宕掉,从节点也无法承担主节点的任务,导致整个系统无法正常执行业务
因此引入 Sentinel,若主节点宕掉,则 Sentinel 会从节点之间会选举出一个节点作为主节点
假设 Sentinel 和 集群的各个实例处于不同的网络分区,由于网络抖动,Sentinel 没有心跳感知到主节点,因此选举提升了一个从节点作为新的主节点:
解决方案:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。