赞
踩
1.BWO-TCN-Attention数据分类预测程序;
2.无Attention适用于MATLAB 2022b版及以上版本;融合Attention要求Matlab2023版以上;
3.基于白鲸优化算法(BWO)、时间卷积神经网络(TCN)融合注意力机制的数据分类预测程序;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
% The Whale Optimization Algorithm function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj) % initialize position vector and score for the leader Best_pos=zeros(1,dim); Best_Cost=inf; %change this to -inf for maximization problems %Initialize the positions of search agents Positions=initialization(pop,dim,ub,lb); curve=zeros(1,Max_iter); t=0;% Loop counter % Main loop while t<Max_iter for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:)<lb; Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update the leader if fitness<Best_Cost % Change this to > for maximization problem Best_Cost=fitness; % Update alpha Best_pos=Positions(i,:); end end a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3) % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12) a2=-1+t*((-1)/Max_iter); % Update the Position of search agents for i=1:size(Positions,1) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A=2*a*r1-a; % Eq. (2.3) in the paper C=2*r2; % Eq. (2.4) in the paper b=1; % parameters in Eq. (2.5) l=(a2-1)*rand+1; % parameters in Eq. (2.5) p = rand(); % p in Eq. (2.6) for j=1:size(Positions,2) if p<0.5 if abs(A)>=1 rand_leader_index = floor(pop*rand()+1); X_rand = Positions(rand_leader_index, :); D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7) Positions(i,j)=X_rand(j)-A*D_X_rand; % Eq. (2.8) elseif abs(A)<1 D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1) Positions(i,j)=Best_pos(j)-A*D_Leader; % Eq. (2.2) end elseif p>=0.5 distance2Leader=abs(Best_pos(j)-Positions(i,j)); % Eq. (2.5) Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j); end end end t=t+1; curve(t)=Best_Cost; [t Best_Cost] end
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。