赞
踩
人工智能 (Artificial Intelligence, AI) 浪潮正在席卷全球,在上一讲中,我们给出了人工智能的定义、话题、四大技术分支、主要应用领域和三种形态:弱人工智能、强人工智能和超级人工智能,让大家了解了人工智能这个耳熟能详的概念。其中,我们区别了弱人工智能和强人工智能的概念:前者让机器具备观察和感知的能力,可以做到一定程度的理解和推理;而强人工智能让机器获得自适应能力,解决一些之前没有遇到过的问题。电影里的人工智能多半都是在描绘强人工智能,而这部分在目前的现实世界里难以真正实现;目前的科研工作主要集中在弱人工智能这部分,并且已经取得了一系列的重大突破。
在这一讲中,我们打算理一下人工智能的发展历史,以及各个历史阶段当中侧重的不同算法。
1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念,梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言,或被当成技术疯子的狂想扔到垃圾堆里。直到2012年之前,这两种声音还在同时存在。
2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法——深度学习的出现,人工智能开始大爆发,研究领域也在不断扩大,下图展示了人工智能研究的各个分支,包括计划调度、专家系统、多智能体系统、进化计算、模糊逻辑、机器学习、知识表示、计算机视觉、自然语言处理、推荐系统、机器感知等等。
诸多媒体流行词汇萦绕在我们耳边,比如人工智能 (Artificial Intelligence)、机器学习 (Machine Learning)、深度学习 (Deep Learning)、强化学习 (Reinforcement Learning)。不少人对这些高频词汇的含义及其背后的关系感到困惑,这一讲中,我们会从它们的发展历程、概念、算法种类进行介绍,并且理清它们之间的关系和区别;具体的算法原理留到之后的推送当中详解。
弱人工智能是如何实现的,“智能”又从何而来呢?这主要归功于一种实现人工智能的方法——机器学习。
我们将从深度学习的发展历程、深度学习的概念、深度神经网络的分类几个方面来阐述。
强化学习在各个领域当中应用十分广泛,在这里主要给出它的定义、适用范围、组成成分和交互过程。
迁移学习 (Transfer Learning) 顾名思义就是就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习 (Starting From Scratch)。
以上我们分别介绍了机器学习、深度学习、强化学习、迁移学习算法,那么它们之前存在怎样的关系呢?它们和人工智能又存在怎样的关联呢?
关注微信公众号“机器学习和人工智能”,干货多多~
我们会定期推送Python编程,人工智能基础算法,学术界、工业界最新动态,让更多的人了解人工智能~
欢迎扫描下方二维码关注哈~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。