当前位置:   article > 正文

请用python编写在tensorflow框架下的tcn与注意力机制融合进行预测回归的代码

tcn tensorflow实现

下面是一个完整的代码实现,使用了 TensorFlow 2.x 实现了一个简单的带有注意力机制的 Temporal Convolutional Network(TCN)进行回归预测:

``` import tensorflow as tf from tensorflow.keras.layers import Input, Conv1D, Dense, Dropout, Activation, Add, GlobalMaxPool1D from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam

class TCN(Model): def init(self, num_channels, kernel_size, dropout): super(TCN, self).init() self.num_channels = num_channels self.kernel_size = kernel_size self.dropout = dropout self.conv1 = Conv1D(self.num_channels, self.kernel_size, padding='causal', activation='relu') self.dropout1 = Dropout(self.dropout) self.conv2 = Conv1D(self.num_channels, self.kernel_size, padding='causal', activation='relu') self.dropout2 = Dropout(se

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/338883
推荐阅读
相关标签
  

闽ICP备14008679号