赞
踩
#%% import torch from torch import nn from einops import rearrange,repeat from einops.layers.torch import Rearrange #%% def pair(t): return t if isinstance(t,tuple) else (t,t) #%% class PreNorm(nn.Module): def __init__(self,dim,fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self,x,**kwargs): return self.fn(self.norm(x),**kwargs) #%% class FeedForward(nn.Module): def __init__(self,dim,hidden_dim,dropout=0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim,hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim,dim), nn.Dropout(dropout) ) def forward(self,x): return self.net(x) #%% class Attention(nn.Module): def __init__(self,dim,heads=8,dim_head=64,dropout=0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads==1 and dim_head ==dim) self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim=-1) self.to_qkv = nn.Linear(dim,inner_dim * 3,bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim,dim), nn.Dropout(dropout), ) if project_out else nn.Identity() def forward(self,x): qkv = self.to_qkv(x).chunk(3,dim=-1) q,k,v = map(lambda t:rearrange(t,'b n (h d) -> b h n d',h = self.heads),qkv) dots = torch.matmul(q,k.transpose(-1,-2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn,v) out = rearrange(out,'b h n d -> b n (h d)') return self.to_out(out) #%% class Transformer(nn.Module): def __init__(self,dim,depth,heads,dim_head,mlp_dim,dropout=0.): super().__init__() self.layers = nn.ModuleList([]) # 把多个encoder堆叠在一起 for _ in range(depth): self.layers.append(nn.ModuleList([ # encoder中的 多头注意力机制 + Add & Norm PreNorm(dim,Attention(dim,heads=heads,dim_head=dim_head,dropout=dropout)), # Feed Forward + Add & Norm PreNorm(dim,FeedForward(dim,mlp_dim,dropout=dropout)) ])) def forward(self,x): for attn,ff in self.layers: # 输入到多头注意力机制 并进行 残差连接 x = attn(x) + x # 输入到前馈神经网络 并进行 残差连接 x = ff(x) + x return x #%% class VIT(nn.Module): def __init__(self,*,image_size,patch_size,num_classes,dim,depth,heads,mlp_dim,pool='cls',channels=3,dim_head=64,emb_dropout=0.,dropout=0.): super().__init__() image_height,image_width = pair(image_size) #224x224 patch_height,patch_width = pair(patch_size) #16x16 # 图片的高和宽必须分别整除patch_height和patch_width assert image_height % patch_height ==0 and image_width % patch_width ==0,'Image dimensions must be divisible by the patch_size' num_patches = (image_height//patch_height) * (image_width//patch_width) patch_dim = channels * patch_height * patch_width # 把patch展平后的维度 assert pool in {'cls','mean'},'pool类型必须是cls token或者平均池化' '''模块一:把每个patch转换为embedding''' self.to_patch_embedding = nn.Sequential( # (样本数,通道数,高上划分的patch数,宽上划分的patch数)-> (样本数,(patch的高,patch的宽),(patch在高上的个数,patch在宽上的个数,通道道数)) Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)',p1=patch_height,p2=patch_width), # 1.把patch拉平,变成patch_dim。 2.把patch_dim变成dim,即embedding需要的维度。 nn.Linear(patch_dim,dim), ) '''模块二:生成位置编码''' # dim是encoder需要的维度,num_patches+1是把cls的位置编码也给加上去了 # nn.Parameter是pytorch的一个类,用于将一个张量标记为模型的参数,训练过程中模型将更新这些参数以最小化损失函数 # torch.randn(1,2,3) 生成一个形状为(1,2,3)的符合正态分布的随机数 self.pos_embedding = nn.Parameter(torch.randn(1,num_patches+1,dim)) self.cls_token = nn.Parameter(torch.randn(1,1,dim)) self.dropout = nn.Dropout(emb_dropout) '''模块三:transformer的encoder''' self.transformer = Transformer(dim,depth,heads,dim_head,mlp_dim,dropout) # 池化操作 self.pool = pool # 不做任何操作 self.to_latent = nn.Identity() '''模块四:mlp_head''' self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim,num_classes) ) def forward(self,img): x = self.to_patch_embedding(img) b,n,_ = x.shape cls_tokens = repeat(self.cls_token,'() n d -> b n d',b=b) x = torch.cat((cls_tokens,x),dim=1) x+=self.pos_embedding[:,:(n+1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim=1) if self.pool == 'mean' else x[:,0] x = self.to_latent(x) return self.mlp_head(x) #%% v = VIT( image_size = 224, patch_size = 16, num_classes = 1000,# 最后cls拿出来做linear层的时候映射到多少个维度上 dim = 1024, depth = 6, # encoder的个数 heads = 16, # 多头注意力机制的头 mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) #%% img = torch.randn(1,3,224,224) preds = v(img) preds.shape #%%
Vision Transformer(ViT)PyTorch代码全解析(附图解)
https://blog.csdn.net/weixin_44966641/article/details/118733341
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。