当前位置:   article > 正文

智能优化算法之蚁群算法_蚁群算法公式

蚁群算法公式

1、蚁群算法概述

  • 蚁群算法(Ant Colony Algorithm, ACA) 由Marco Dorigo于1992年在他的博士论文中首次提出, 该算法模拟了自然界中蚂蚁的觅食行为。
  •  蚂蚁在寻找食物源时, 会在其经过的路径上释放一种信息素, 并能够感知其它蚂蚁释放的信息素。 信息素浓度的大小表征路径的远近, 信息素浓度越高, 表示对应的路径距离越短
  • 通常, 蚂蚁会以较大的概率优先选择信息素浓度较高的路径, 并释放一定量的信息素, 以增强该条路径上的信息素浓度, 这样, 会形成一个正反馈。 最终, 蚂蚁能够找到一条从巢穴到食物源的最佳路径, 即距离最短.
  • 路径上的信息素浓度会随着时间的推进而逐渐衰减。

 2、蚁群算法基本思路
 

        将蚁群算法应用于解决优化问题, 其基本思路为: 用蚂蚁的行走路径表示待优化问题的可行解整个蚂蚁群体的所有路径构成待优化问题的解空间。 路径较短的蚂蚁释放的信息素量较多,随着时间的推进, 较短的路径上累积的信息素浓度逐渐增高, 选择该路径的蚂蚁个数也愈来愈多。 最终, 整个蚂蚁会在正反馈的作用下集中到最佳的路径上, 此时对应的便是待优化问题的最优解。


 3、蚁群算法的核心基本流程

         不失一般性,设整个蚂蚁群体中蚂蚁的数量为m,城市的数量为n,城市i与城市j之间的相互距离为d_{ij}(i,j=1,2,...n)t时刻城市i与城市j连接路径上的信息素浓度为\tau _{ij}(t)。初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设为\tau _{ij}(t)=\tau _{0}
        蚂蚁k(k=1,2,...m)根据各个城市间连接路径上的信息素浓度决定其下一个访问城市,设P_{ij}^{k}(t)表示t时刻蚂蚁k从城市i转移到城市j的概率,其计算公式如下:

 其中,

\eta _{ij}(t)为启发函数, 

\eta _{ij}(t)=\frac{1}{d_{ij}}

表示蚂蚁从城市i转移到城市j的期望程度s_{allow_{k}} (k=1,2,...n)为蚂蚁k待访问城市的集合。开始时allow_{k}中有(n-1)个元素,即包括除了蚂蚁k出发城市的其它所有城市。随着时间的推进,allow_{k}中的元素不断减少,直至为空,即表示所有的城市均访问完毕。

\alpha为信息素重要因子,值越大,表示信息素浓度在转移中的作用越大,

\beta为启发函数重要因子,值越大,表示启发函数在转移中的作用越大。即蚂蚁会以较大的概率转移到距离短的城市。

        在蚂蚁释放信息素的同时,各个城市间连接路径上的信息素逐渐消失,设参数\rho(0<\rho<1)表示信息素的挥发程度。因此,当所有蚂蚁完成一次循环后,各个城市间连接路径上的信息素浓度需进行实时更新,具体公式如下:   

     其中,\Delta \tau _{ij}^{k}表示第k只蚂蚁在城市i与城市j连接路径上释放的信息素浓度,\Delta \tau ij表示所有蚂蚁在城市i与城市j连接路径上释放的信息素浓度之和。

3.1.1、信息素浓度更新模型

1.ant cycle system 模型

         ant cycle system模型中,\Delta \tau _{ij}^{k}的计算公式如下所示。

 其中,Q为常数,表示蚂蚁循环一次所释放的信息素总量;Lk为第k只蚂蚁经过路径的长度。

2.ant quantity system 模型

        ant quantity system模型中,\Delta \tau _{ij}^{k}的计算公式如下所示。

 3.ant density system 模型

        ant density system模型中,\Delta \tau _{ij}^{k}的计算公式如下所示。

 4、核心算法流程

(1)初始化参数
        在计算之初,需对相关的参数进行初始化,如蚁群规模(蚂蚁数量)m、信息素重要程度因子\alpha、启发函数重要程度因子\beta、信息素挥发因子\rho、信息素释放总量Q、最大迭代次iter-max、迭代次数初值iter=1

(2)构建解空间
        将各个蚂蚁随机的置于不同出发点,对每个蚂蚁k(k=1,2,..m),计算其下一个待访问的城市,直到所有蚂蚁访问完所有的城市。

(3)更新信息素
        计算各个蚂蚁经过的路径长度L_{k}(1,2,...m),记录当前迭代次数中的最优解(最短路径)。同时对各个城市连接路径上的信息素浓度进行更新。

(4)判断是否终止
        若iter<iter_max,则令iter=iter +1,清空蚂蚁经过路径的记录表,并返回步骤(2);否则,终止计算,输出最优解。

5、 蚁群算法的特点

  1.  采用正反馈机制, 使得搜索过程不断收敛, 最终逼近于最优解;
  2. 每个个体可以通过释放信息素来改变周围的环境, 且每个个体能够感知周围环境的实时变化,个体间通过环境进行间接地通讯;
  3. 搜索过程采用分布式计算方式, 多个个体同时进行并行计算, 大大提高了算法的计算能力和运行效率;
  4. 启发式的概率搜索方式, 不容易陷入局部最优, 易于寻找到全局最优解
     

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/373662
推荐阅读
相关标签
  

闽ICP备14008679号