赞
踩
词云,又称文字云、标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。常见于博客、微博、文章分析等。
除了网上现成的Wordle、Tagxedo、Tagul、Tagcrowd等词云制作工具,在python中也可以用wordcloud包比较轻松地实现(官网、github项目):
from wordcloud importWordCloudimportmatplotlib.pyplot as plt#Read the whole text.
text = open(‘constitution.txt‘).read()#Generate a word cloud image
wordcloud =WordCloud().generate(text)#Display the generated image:#the matplotlib way:
plt.imshow(wordcloud, interpolation=‘bilinear‘)
plt.axis("off")
生成的词云如下:
还可以设置图片作为mask:
alice_mask = np.array(Image.open(path.join(d, "alice_mask.png")))
wc= WordCloud(background_color="white", max_words=2000, mask=alice_mask, stopwords=stopwords, contour_width=3, contour_color=‘steelblue‘)
wc.generate(text)
1. 安装
pip install wordcloud
2. 根据源码分析wordcloud的实现原理
总的来说,wordcloud做的是三件事:
(1) 文本预处理
(2) 词频统计
(3) 将高频词以图片形式进行彩色渲染
从上面的代码可以看到,用 wordcloud.generate(text) 就完成了这三项工作。
源码:
defgenerate(self, text):"""Generate wordcloud from text.
The input "text" is expected to be a natural text. If you pass a sorted
list of words, words will appear in your output twice. To remove this
duplication, set ``collocations=False``.
Alias to generate_from_text.
Calls process_text and generate_from_frequencies.
Returns
-------
self"""
returnself.generate_from_text(text)defgenerate_from_text(self, text):"""Generate wordcloud from text.
The input "text" is expected to be a natural text. If you pass a sorted
list of words, words will appear in your output twice. To remove this
duplication, set ``collocations=False``.
Calls process_text and generate_from_frequencies.
..versionchanged:: 1.2.2
Argument of generate_from_frequencies() is not return of
process_text() any more.
Returns
-------
self"""words=self.process_text(text)
self.generate_from_frequencies(words)return self
generate()和generate_from_text()
它的调用顺序是:
generate(self, text)=>self.generate_from_text(text)=>words=self.process_text(text)
self.generate_from_frequencies(words)
其中 process_text(text) 对应的是文本预处理和词频统计,而 generate_from_frequencies(words) 对应的是根据词频中生成词云。
(1) process_text(text) 主要是进行分词和去噪。
具体地,它做了以下操作:
检测文本编码
分词(根据规则进行tokenize)、保留单词字符(A-Za-z0-9_)和单引号(‘)、去除单字符
去除停用词
去除后缀(‘s) -- 针对英文
去除纯数字
统计一元和二元词频计数(unigrams_and_bigrams) -- 可选
返回的结果是一个字典 dict(string, int) ,表示的是分词后的token以及对应出现的次数。
这里有一些需要注意的地方,文章后面会再提到。
源码如下:
defprocess_text(self, text):"""Splits a long text into words, eliminates the stopwords.
Parameters
----------
text : string
The text to be processed.
Returns
-------
words : dict (string, int)
Word tokens with associated frequency.
..versionchanged:: 1.2.2
Changed return type from list of tuples to dict.
Notes
-----
There are better ways to do word tokenization, but I don‘t want to
include all those things."""stopwords= set([i.lower() for i inself.stopwords])
flags= (re.UNICODE if sys.version < ‘3‘ and type(text) isunicodeelse0)
regexp= self.regexp if self.regexp is not None else r"\w[\w‘]+"words=re.findall(regexp, text, flags)#remove stopwords
words = [word for word in words if word.lower() not instopwords]#remove ‘s
words = [word[:-2] if word.lower().endswith("‘s") elsewordfor word inwords]#remove numbers
words = [word for word in words if notword.isdigit()]ifself.collocations:
word_counts=unigrams_and_bigrams(words, self.normalize_plurals)else:
word_counts, _=process_tokens(words, self.normalize_plurals)return word_counts
def process_text(self, text)
(2) generate_from_frequencies(words) 主要是根据上一步的结果生成词云分布。
具体地,它做了以下操作:
对词计数结果进行排序,并归一化(normalized)到0~1之间,得到词频
创建图像并确定font_size初始值
给self.words_赋值,记录的是出现频率最高的前max_words个词,以及对应的归一化后的词频,即dict(token, normalized_frequency)
画出灰度图:词频越大,font_size越大;根据生成的随机数来决定字的水平/垂直方向
若随机数小于self.prefer_horizontal则为水平方向,否则为垂直方向;
如果空间不足,优先考虑旋转方向,其次考虑将字体变小
给self.layout_赋值,记录的是词和词频、字体大小、位置、方向、以及颜色,即list(zip(frequencies, font_sizes, positions, orientations, colors))
可以看到,这个函数的主要目的在于得到self.layout_的值,记录了要生成词云分布图所需要的信息。
后面wordcloud.to_file(filename)或者plt.imshow(wordcloud)会把结果以图像的形式呈现出来。其中to_file()函数就会先检测是否已经给self.layout_赋值,如果没有的话会报错。
源码如下:
def generate_from_frequencies(self, frequencies, max_font_size=None):"""Create a word_cloud from words and frequencies.
Parameters
----------
frequencies : dict from string to float
A contains words and associated frequency.
max_font_size : int
Use this font-size instead of self.max_font_size
Returns
-------
self"""
#make sure frequencies are sorted and normalized
frequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True)if len(frequencies) <=0:raise ValueError("We need at least 1 word to plot a word cloud,"
"got %d." %len(frequencies))
frequencies=frequencies[:self.max_words]#largest entry will be 1
max_frequency = float(frequencies[0][1])
frequencies= [(word, freq /max_frequency)for word, freq infrequencies]if self.random_state is notNone:
random_state=self.random_stateelse:
random_state=Random()if self.mask is notNone:
mask=self.mask
width= mask.shape[1]
height=mask.shape[0]if mask.dtype.kind == ‘f‘:
warnings.warn("mask image should be unsigned byte between 0"
"and 255. Got a float array")if mask.ndim == 2:
boolean_mask= mask == 255
elif mask.ndim == 3:#if all channels are white, mask out
boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)else:raise ValueError("Got mask of invalid shape: %s"
%str(mask.shape))else:
boolean_mask=None
height, width=self.height, self.width
occupancy=IntegralOccupancyMap(height, width, boolean_mask)#create image
img_grey = Image.new("L", (width, height))
draw=ImageDraw.Draw(img_grey)
img_array=np.asarray(img_grey)
font_sizes, positions, orientations, colors=[], [], [], []
last_freq= 1.if max_font_size isNone:#if not provided use default font_size
max_font_size =self.max_font_sizeif max_font_size isNone:#figure out a good font size by trying to draw with
#just the first two words
if len(frequencies) == 1:#we only have one word. We make it big!
font_size =self.heightelse:
self.generate_from_frequencies(dict(frequencies[:2]),
max_font_size=self.height)#find font sizes
sizes = [x[1] for x inself.layout_]try:
font_size= int(2 * sizes[0] * sizes[1]/ (sizes[0] + sizes[1]))#quick fix for if self.layout_ contains less than 2 values
#on very small images it can be empty
exceptIndexError:try:
font_size=sizes[0]exceptIndexError:raise ValueError(‘canvas size is too small‘)else:
font_size=max_font_size#we set self.words_ here because we called generate_from_frequencies
#above... hurray for good design?
self.words_ =dict(frequencies)#start drawing grey image
for word, freq infrequencies:#select the font size
rs =self.relative_scalingif rs !=0:
font_size= int(round((rs * (freq /float(last_freq))+ (1 - rs)) *font_size))if random_state.random()
orientation=Noneelse:
orientation=Image.ROTATE_90
tried_other_orientation=FalsewhileTrue:#try to find a position
font =ImageFont.truetype(self.font_path, font_size)#transpose font optionally
transposed_font =ImageFont.TransposedFont(
font, orientation=orientation)#get size of resulting text
box_size = draw.textsize(word, font=transposed_font)#find possible places using integral image:
result = occupancy.sample_position(box_size[1] +self.margin,
box_size[0]+self.margin,
random_state)if result is not None or font_size
break
#if we didn‘t find a place, make font smaller
#but first try to rotate!
if not tried_other_orientation and self.prefer_horizontal < 1:
orientation= (Image.ROTATE_90 if orientation is None elseImage.ROTATE_90)
tried_other_orientation=Trueelse:
font_size-=self.font_step
orientation=Noneif font_size
breakx, y= np.array(result) + self.margin // 2
#actually draw the text
draw.text((y, x), word, fill="white", font=transposed_font)
positions.append((x, y))
orientations.append(orientation)
font_sizes.append(font_size)
colors.append(self.color_func(word, font_size=font_size,
position=(x, y),
orientation=orientation,
random_state=random_state,
font_path=self.font_path))#recompute integral image
if self.mask isNone:
img_array=np.asarray(img_grey)else:
img_array= np.asarray(img_grey) +boolean_mask#recompute bottom right
#the order of the cumsum‘s is important for speed ?!
occupancy.update(img_array, x, y)
last_freq=freq
self.layout_=list(zip(frequencies, font_sizes, positions,
orientations, colors))return self
def generate_from_frequencies(self, frequencies, max_font_size=None)
3. 应用到中文语料应该要注意的点
wordcloud包是由Andreas Mueller在2015-03-20发布1.0.0版本,现在最新的是2018-03-13发布的1.4.1版本。
英文语料可以直接输入到wordcloud中,但是对于中文语料,仅仅用wordcloud不能直接生成中文词云图。
原因:
英文单词以空格分隔,而我们从前面process_text(text)看到源码中是直接用正则表达式(默认为r"\w[\w‘]+")进行处理:
In : re.findall(r"\w[\w‘]+", "It‘s Monday today.")
Out: ["It‘s", ‘Monday‘, ‘today‘]
但是中文里面词与词之间一般不用字符分隔:
In : re.findall(r"\w[\w‘]+", "今天天气不错,蓝天白云,还有温暖的阳光 哈 哈哈")
Out: [‘今天天气不错‘, ‘蓝天白云‘, ‘还有温暖的阳光‘, ‘哈哈‘]
可以看出,原生的wordcloud是为英文服务的,去除标点符号(单符号‘除外)并分割成token;
而应用到中文语料上的时候,注意要先分好词,再用空格分隔连接成字符串,最后输入到wordcloud。
另外要注意的是,无论是对英文还是中文,默认是把单字符剔除掉(因为 regexp = self.regexp if self.regexp is not None else r"\w[\w‘]+" ),如果想要保留单字符,将regexp参数讲表达式设置为 r"\w[\w‘]*" 即可。
from wordcloud importWordCloudfrom scipy.misc importimreaddef generate_wordcloud(text, max_words=200, pic_path=None):"""生成词云
:param text: 一段以空格为间断的字符串
:param max_words: 词数目上限
:param pic_path: 输出图片路径
:return:"""mk= imread("tuoyuan.jpg")
wc= WordCloud(font_path="/usr/share/fonts/myfonts/msyh.ttf", background_color="white", max_words=max_words,
mask=mk, width=1000, height=500, max_font_size=100, prefer_horizontal=0.95, collocations=False)
wc.generate(text=text)ifpic_path:
wc.to_file(pic_path)else:
plt.imshow(wc)
plt.axis("off")
plt.show()returnwc.words_def run_wordcloud(corpus, max_words, pic_path=None):
text= " ".join([" ".join(line) for line in corpus]) #将分词后的结果用空格连接
word2weight = generate_wordcloud(text=text, max_words=max_words, pic_path=pic_path)
word2weight_sorted= sorted(word2weight.items(), key=lambda x: x[1], reverse=True)
logging.info([(k, float("%.5f" % v)) for k, v in word2weight_sorted])
4. 重写代码
用词云是为了直观地看语料的关键信息,在本人的实际工作应用中,主要目的在于获取关键信息,而不太关注界面的呈现方式。
所以在了解wordcloud源码实现原理之后,决定自己用代码实现。
一方面,使得代码的实现更公开透明,在效率相当的情况下尽量避免使用第三方库,效果可控,甚至还可以提升效率;
另一方面,能结合实际情况更灵活地处理问题。
针对中文的预处理,可以和分词结合一起完成。这里主要进行:分词和词性标注、小写化、去停用词、去数字、去单字符、以及保留指定词性。
importjiebaimportjieba.posseg as psegclassUtils(object):def __init__(self, utils_data=None):
self.stopwords=self.init_utils(utils_data)
self.pos_save={"n", "an", "Ng", "nr", "ns", "nt", "nz", "vn", "un", #名
"v", "vg", "vd", #动
"a", "ag", "ad", #形
"j", "l", "i", "z", "b", "g", "s", "h", #j简称略语、l习用语、i成语、z状态词、b区别词、g语素、s处所词、h前接成分
"zg", "eng","x"} #未知(自定义词)
def_init_utils(self, utils_data):for wd in utils_data["user_dict"]:
jieba.add_word(wd)return set(utils_data["stopwords"])def _token_filter(self, token): #去停用词; 去数字; 去单字
return token not in self.stopwords and not token.isdigit() and len(token) >= 2
def _token_filter_with_flag(self, pair_word_flag): #保留指定词性
return self.token_filter(pair_word_flag.word) and pair_word_flag.flag inself.pos_savedefcut(self, text):return list(filter(self._token_filter, list(jieba.cut(text.lower())))) #分词; 小写化;
defcut_with_flag(self, text):
pairs= list(filter(self._token_filter_with_flag, list(pseg.cut(text.lower())))) #分词和词性标注; 小写化;
return [p.word for p in pairs]
做完文本分词和其它预处理之后,直接统计词及对应的出现次数即可。为了更直观,这里输出的是词计数,而不是归一化后的词频。排序结果与wordcloud等同。
def word_count(corpus, n_gram=1, n=None):
counter=Counter()if n_gram == 1:for line incorpus:
counter.update(line)elif n_gram == 2:for line incorpus:
size=len(line)
counter.update(["%s_%s" % (line[idx], line[idx + 1]) for idx in range(size) if idx + 1 < size]) #有序
else:
logging.info("[Error] Invalid value of param n_gram: %s (only 1 or 2 accepted)" %n_gram)return counter.most_common(n=n)
另外还可以统计高频词的共现情况、把高频词/词共现反向映射到对应的句子等等,便于从高频词层面到高频句子类型层面的归纳。
参考:
https://pypi.org/project/wordcloud/
https://github.com/amueller/word_cloud
http://python.jobbole.com/87496/
https://www.jianshu.com/p/ead991a08563
https://blog.csdn.net/qq_34739497/article/details/78285972
https://www.cnblogs.com/sunnyeveryday/p/7043399.html
https://www.cnblogs.com/naraka/p/8992058.html
https://www.cnblogs.com/franklv/p/6995150.html
https://blog.csdn.net/Tang_Chuanlin/article/details/79862505
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。