当前位置:   article > 正文

python爬虫小练习——爬取豆瓣电影top250_rank = article_item.find("div", class_="pic").find

rank = article_item.find("div", class_="pic").find("em").get_text()

爬取豆瓣电影top250

需求分析

将爬取的数据导入到表格中,方便人为查看。

实现方法

三大功能
1,下载所有网页内容。
2,处理网页中的内容提取自己想要的数据
3,导入到表格中

分析网站结构需要提取的内容

在这里插入图片描述

代码

import requests
from bs4 import BeautifulSoup
import pprint
import json
import pandas as pd
import time

# 构造分页数字列表
page_indexs = range(0, 250, 25)
list(page_indexs)

# 请求头
headers = {
    'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/1'
}

# 下载所有的网页然后交给下一个函数处理
def download_all_htmls():
    htmls = []
    for idx in page_indexs:
        url = "https://movie.douban.com/top250?start={}&filter=".format(idx)
        print("craw html", url)
        r = requests.get(url, headers=headers)
        if r.status_code != 200:
            raise Exception("error")
        htmls.append(r.text)
        time.sleep(0.5)
    return htmls



# 解析HTML得到数据

def parse_single_html(html):
    # 使用BeautifulSoup处理网页,传入参数html,使用html.parser模式处理
    soup = BeautifulSoup(html, 'html.parser')

    # 使用BeautifulSoup匹配想要的内容,使用find函数
    article_items = (
        soup.find("div", class_="article")
            .find("ol", class_="grid_view")
            .find_all("div", class_="item")
    )
    datas = []

    # 内容比较多分步提取内容
    for article_item in article_items:
        rank = article_item.find("div", class_="pic").find("em").get_text()
        info = article_item.find("div", class_="info")
        title = info.find("div", class_="hd").find("span", class_="title").get_text()
        stars = (
            info.find("div", class_="bd")
                .find("div", class_="star")
                .find_all("span")

        )
        rating_star = stars[0]["class"][0]
        rating_num = stars[1].get_text()
        comments = stars[3].get_text()

        datas.append({
            "rank": rank,
            "title": title,
            "rating_star": rating_star.replace("rating", "").replace("-t", ""),
            "rating_num": rating_num,
            "comments": comments.replace("人评价", "")
        })
    return datas
    pprint.pprint()


if __name__ == '__main__':

    # 下载所有的网页内容
    htmls = download_all_htmls()
    # pprint.pprint(parse_single_html(htmls[0]))

    # 解析网页内容并追到all_datas的列表中
    all_datas = []
    for html in htmls:
        all_datas.extend(parse_single_html(html))


    # 使用pandas模块,批量导入到表格中
    df = pd.DataFrame(all_datas)
    df.to_excel("doubanTOP250.xlsx")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86

效果图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文章

https://www.bilibili.com/video/BV1CY411f7yh/?p=15

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/382211
推荐阅读
相关标签
  

闽ICP备14008679号