赞
踩
目录
pytorch Dataset, DataLoader产生自定义的训练数据
2. torch.utils.data.DataLoader
3. 使用Dataset, DataLoader产生自定义训练数据
datasets这是一个pytorch定义的dataset的源码集合。下面是一个自定义Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()两个方法是必须重写的。__getitem__()返回训练数据,如图片和label,而__len__()返回数据长度。
- class CustomDataset(data.Dataset):#需要继承data.Dataset
- def __init__(self):
- # TODO
- # 1. Initialize file path or list of file names.
- pass
- def __getitem__(self, index):
- # TODO
- # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
- # 2. Preprocess the data (e.g. torchvision.Transform).
- # 3. Return a data pair (e.g. image and label).
- #这里需要注意的是,第一步:read one data,是一个data
- pass
- def __len__(self):
- # You should change 0 to the total size of your dataset.
- return 0
DataLoader(object)可用参数:
- dataset(Dataset): 传入的数据集
- batch_size(int, optional): 每个batch有多少个样本
- shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序
- sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
- batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
- num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
- collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数
- pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.
- drop_last (bool, optional):如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。
- timeout(numeric, optional):如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
- worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
假设TXT文件保存了数据的图片和label,格式如下:第一列是图片的名字,第二列是label
- 0.jpg 0
- 1.jpg 1
- 2.jpg 2
- 3.jpg 3
- 4.jpg 4
- 5.jpg 5
- 6.jpg 6
- 7.jpg 7
- 8.jpg 8
- 9.jpg 9
也可以是多标签的数据,如:
- 0.jpg 0 10
- 1.jpg 1 11
- 2.jpg 2 12
- 3.jpg 3 13
- 4.jpg 4 14
- 5.jpg 5 15
- 6.jpg 6 16
- 7.jpg 7 17
- 8.jpg 8 18
- 9.jpg 9 19
图库十张原始图片放在./dataset/images目录下,然后我们就可以自定义一个Dataset解析这些数据并读取图片,再使用DataLoader类产生batch的训练数据
首先先自定义一个TorchDataset类,用于读取图片数据,产生标签:
注意初始化函数:
- import torch
- from torch.autograd import Variable
- from torchvision import transforms
- from torch.utils.data import Dataset, DataLoader
- import numpy as np
- from utils import image_processing
- import os
-
- class TorchDataset(Dataset):
- def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):
- '''
- :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id
- :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径
- :param resize_height 为None时,不进行缩放
- :param resize_width 为None时,不进行缩放,
- PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放
- :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize
- '''
- self.image_label_list = self.read_file(filename)
- self.image_dir = image_dir
- self.len = len(self.image_label_list)
- self.repeat = repeat
- self.resize_height = resize_height
- self.resize_width = resize_width
-
- # 相关预处理的初始化
- '''class torchvision.transforms.ToTensor'''
- # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据
- # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。
- self.toTensor = transforms.ToTensor()
-
- '''class torchvision.transforms.Normalize(mean, std)
- 此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),
- 用公式channel = (channel - mean) / std进行规范化。
- '''
- # self.normalize=transforms.Normalize()
-
- def __getitem__(self, i):
- index = i % self.len
- # print("i={},index={}".format(i, index))
- image_name, label = self.image_label_list[index]
- image_path = os.path.join(self.image_dir, image_name)
- img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)
- img = self.data_preproccess(img)
- label=np.array(label)
- return img, label
-
- def __len__(self):
- if self.repeat == None:
- data_len = 10000000
- else:
- data_len = len(self.image_label_list) * self.repeat
- return data_len
-
- def read_file(self, filename):
- image_label_list = []
- with open(filename, 'r') as f:
- lines = f.readlines()
- for line in lines:
- # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
- content = line.rstrip().split(' ')
- name = content[0]
- labels = []
- for value in content[1:]:
- labels.append(int(value))
- image_label_list.append((name, labels))
- return image_label_list
-
- def load_data(self, path, resize_height, resize_width, normalization):
- '''
- 加载数据
- :param path:
- :param resize_height:
- :param resize_width:
- :param normalization: 是否归一化
- :return:
- '''
- image = image_processing.read_image(path, resize_height, resize_width, normalization)
- return image
-
- def data_preproccess(self, data):
- '''
- 数据预处理
- :param data:
- :return:
- '''
- data = self.toTensor(data)
- return data
- if __name__=='__main__':
- train_filename="../dataset/train.txt"
- # test_filename="../dataset/test.txt"
- image_dir='../dataset/images'
-
-
- epoch_num=2 #总样本循环次数
- batch_size=7 #训练时的一组数据的大小
- train_data_nums=10
- max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数
-
- train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1)
- # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1)
- train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
- # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)
-
- # [1]使用epoch方法迭代,TorchDataset的参数repeat=1
- for epoch in range(epoch_num):
- for batch_image, batch_label in train_loader:
- image=batch_image[0,:]
- image=image.numpy()#image=np.array(image)
- image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- image_processing.cv_show_image("image",image)
- print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
- # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
上面的迭代代码是通过两个for实现,其中参数epoch_num表示总样本循环次数,比如epoch_num=2,那就是所有样本循环迭代2次。但这会出现一个问题,当样本总数train_data_nums与batch_size不能整取时,最后一个batch会少于规定batch_size的大小,比如这里样本总数train_data_nums=10,batch_size=7,第一次迭代会产生7个样本,第二次迭代会因为样本不足,只能产生3个样本。
我们希望,每次迭代都会产生相同大小的batch数据,因此可以如下迭代:注意本人在构造TorchDataset类时,就已经考虑循环迭代的方法,因此,你现在只需修改repeat为None时,就表示无限循环了,调用方法如下:
- '''
- 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定
- '''
- train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None)
- train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
- # [2]第2种迭代方法
- for step, (batch_image, batch_label) in enumerate(train_loader):
- image=batch_image[0,:]
- image=image.numpy()#image=np.array(image)
- image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- image_processing.cv_show_image("image",image)
- print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))
- # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
- if step>=max_iterate:
- break
- # [3]第3种迭代方法
- # for step in range(max_iterate):
- # batch_image, batch_label=train_loader.__iter__().__next__()
- # image=batch_image[0,:]
- # image=image.numpy()#image=np.array(image)
- # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- # image_processing.cv_show_image("image",image)
- # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
- # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
上面代码,用到image_processing,这是本人封装好的图像处理包,包含读取图片,画图等基本方法:
- # -*-coding: utf-8 -*-
- """
- @Project: IntelligentManufacture
- @File : image_processing.py
- @Author : panjq
- @E-mail : pan_jinquan@163.com
- @Date : 2019-02-14 15:34:50
- """
-
- import os
- import glob
- import cv2
- import numpy as np
- import matplotlib.pyplot as plt
-
- def show_image(title, image):
- '''
- 调用matplotlib显示RGB图片
- :param title: 图像标题
- :param image: 图像的数据
- :return:
- '''
- # plt.figure("show_image")
- # print(image.dtype)
- plt.imshow(image)
- plt.axis('on') # 关掉坐标轴为 off
- plt.title(title) # 图像题目
- plt.show()
-
- def cv_show_image(title, image):
- '''
- 调用OpenCV显示RGB图片
- :param title: 图像标题
- :param image: 输入RGB图像
- :return:
- '''
- channels=image.shape[-1]
- if channels==3:
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 将BGR转为RGB
- cv2.imshow(title,image)
- cv2.waitKey(0)
-
- def read_image(filename, resize_height=None, resize_width=None, normalization=False):
- '''
- 读取图片数据,默认返回的是uint8,[0,255]
- :param filename:
- :param resize_height:
- :param resize_width:
- :param normalization:是否归一化到[0.,1.0]
- :return: 返回的RGB图片数据
- '''
-
- bgr_image = cv2.imread(filename)
- # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR)
- if bgr_image is None:
- print("Warning:不存在:{}", filename)
- return None
- if len(bgr_image.shape) == 2: # 若是灰度图则转为三通道
- print("Warning:gray image", filename)
- bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)
-
- rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB
- # show_image(filename,rgb_image)
- # rgb_image=Image.open(filename)
- rgb_image = resize_image(rgb_image,resize_height,resize_width)
- rgb_image = np.asanyarray(rgb_image)
- if normalization:
- # 不能写成:rgb_image=rgb_image/255
- rgb_image = rgb_image / 255.0
- # show_image("src resize image",image)
- return rgb_image
-
- def fast_read_image_roi(filename, orig_rect, ImreadModes=cv2.IMREAD_COLOR, normalization=False):
- '''
- 快速读取图片的方法
- :param filename: 图片路径
- :param orig_rect:原始图片的感兴趣区域rect
- :param ImreadModes: IMREAD_UNCHANGED
- IMREAD_GRAYSCALE
- IMREAD_COLOR
- IMREAD_ANYDEPTH
- IMREAD_ANYCOLOR
- IMREAD_LOAD_GDAL
- IMREAD_REDUCED_GRAYSCALE_2
- IMREAD_REDUCED_COLOR_2
- IMREAD_REDUCED_GRAYSCALE_4
- IMREAD_REDUCED_COLOR_4
- IMREAD_REDUCED_GRAYSCALE_8
- IMREAD_REDUCED_COLOR_8
- IMREAD_IGNORE_ORIENTATION
- :param normalization: 是否归一化
- :return: 返回感兴趣区域ROI
- '''
- # 当采用IMREAD_REDUCED模式时,对应rect也需要缩放
- scale=1
- if ImreadModes == cv2.IMREAD_REDUCED_COLOR_2 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_2:
- scale=1/2
- elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_4 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_4:
- scale=1/4
- elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_8 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_8:
- scale=1/8
- rect = np.array(orig_rect)*scale
- rect = rect.astype(int).tolist()
- bgr_image = cv2.imread(filename,flags=ImreadModes)
-
- if bgr_image is None:
- print("Warning:不存在:{}", filename)
- return None
- if len(bgr_image.shape) == 3: #
- rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 将BGR转为RGB
- else:
- rgb_image=bgr_image #若是灰度图
- rgb_image = np.asanyarray(rgb_image)
- if normalization:
- # 不能写成:rgb_image=rgb_image/255
- rgb_image = rgb_image / 255.0
- roi_image=get_rect_image(rgb_image , rect)
- # show_image_rect("src resize image",rgb_image,rect)
- # cv_show_image("reROI",roi_image)
- return roi_image
-
- def resize_image(image,resize_height, resize_width):
- '''
- :param image:
- :param resize_height:
- :param resize_width:
- :return:
- '''
- image_shape=np.shape(image)
- height=image_shape[0]
- width=image_shape[1]
- if (resize_height is None) and (resize_width is None):#错误写法:resize_height and resize_width is None
- return image
- if resize_height is None:
- resize_height=int(height*resize_width/width)
- elif resize_width is None:
- resize_width=int(width*resize_height/height)
- image = cv2.resize(image, dsize=(resize_width, resize_height))
- return image
- def scale_image(image,scale):
- '''
- :param image:
- :param scale: (scale_w,scale_h)
- :return:
- '''
- image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1])
- return image
-
-
- def get_rect_image(image,rect):
- '''
- :param image:
- :param rect: [x,y,w,h]
- :return:
- '''
- x, y, w, h=rect
- cut_img = image[y:(y+ h),x:(x+w)]
- return cut_img
- def scale_rect(orig_rect,orig_shape,dest_shape):
- '''
- 对图像进行缩放时,对应的rectangle也要进行缩放
- :param orig_rect: 原始图像的rect=[x,y,w,h]
- :param orig_shape: 原始图像的维度shape=[h,w]
- :param dest_shape: 缩放后图像的维度shape=[h,w]
- :return: 经过缩放后的rectangle
- '''
- new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1])
- new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0])
- new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1])
- new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0])
- dest_rect=[new_x,new_y,new_w,new_h]
- return dest_rect
-
- def show_image_rect(win_name,image,rect):
- '''
- :param win_name:
- :param image:
- :param rect:
- :return:
- '''
- x, y, w, h=rect
- point1=(x,y)
- point2=(x+w,y+h)
- cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2)
- cv_show_image(win_name, image)
-
- def rgb_to_gray(image):
- image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
- return image
-
- def save_image(image_path, rgb_image,toUINT8=True):
- if toUINT8:
- rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8)
- if len(rgb_image.shape) == 2: # 若是灰度图则转为三通道
- bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR)
- else:
- bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR)
- cv2.imwrite(image_path, bgr_image)
-
- def combime_save_image(orig_image, dest_image, out_dir,name,prefix):
- '''
- 命名标准:out_dir/name_prefix.jpg
- :param orig_image:
- :param dest_image:
- :param image_path:
- :param out_dir:
- :param prefix:
- :return:
- '''
- dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg")
- save_image(dest_path, dest_image)
-
- dest_image = np.hstack((orig_image, dest_image))
- save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)
- # -*-coding: utf-8 -*-
- """
- @Project: pytorch-learning-tutorials
- @File : dataset.py
- @Author : panjq
- @E-mail : pan_jinquan@163.com
- @Date : 2019-03-07 18:45:06
- """
- import torch
- from torch.autograd import Variable
- from torchvision import transforms
- from torch.utils.data import Dataset, DataLoader
- import numpy as np
- from utils import image_processing
- import os
-
- class TorchDataset(Dataset):
- def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1):
- '''
- :param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id
- :param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径
- :param resize_height 为None时,不进行缩放
- :param resize_width 为None时,不进行缩放,
- PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放
- :param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize
- '''
- self.image_label_list = self.read_file(filename)
- self.image_dir = image_dir
- self.len = len(self.image_label_list)
- self.repeat = repeat
- self.resize_height = resize_height
- self.resize_width = resize_width
-
- # 相关预处理的初始化
- '''class torchvision.transforms.ToTensor'''
- # 把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据
- # 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。
- self.toTensor = transforms.ToTensor()
-
- '''class torchvision.transforms.Normalize(mean, std)
- 此转换类作用于torch. * Tensor,给定均值(R, G, B) 和标准差(R, G, B),
- 用公式channel = (channel - mean) / std进行规范化。
- '''
- # self.normalize=transforms.Normalize()
-
- def __getitem__(self, i):
- index = i % self.len
- # print("i={},index={}".format(i, index))
- image_name, label = self.image_label_list[index]
- image_path = os.path.join(self.image_dir, image_name)
- img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False)
- img = self.data_preproccess(img)
- label=np.array(label)
- return img, label
-
- def __len__(self):
- if self.repeat == None:
- data_len = 10000000
- else:
- data_len = len(self.image_label_list) * self.repeat
- return data_len
-
- def read_file(self, filename):
- image_label_list = []
- with open(filename, 'r') as f:
- lines = f.readlines()
- for line in lines:
- # rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
- content = line.rstrip().split(' ')
- name = content[0]
- labels = []
- for value in content[1:]:
- labels.append(int(value))
- image_label_list.append((name, labels))
- return image_label_list
-
- def load_data(self, path, resize_height, resize_width, normalization):
- '''
- 加载数据
- :param path:
- :param resize_height:
- :param resize_width:
- :param normalization: 是否归一化
- :return:
- '''
- image = image_processing.read_image(path, resize_height, resize_width, normalization)
- return image
-
- def data_preproccess(self, data):
- '''
- 数据预处理
- :param data:
- :return:
- '''
- data = self.toTensor(data)
- return data
-
- if __name__=='__main__':
- train_filename="../dataset/train.txt"
- # test_filename="../dataset/test.txt"
- image_dir='../dataset/images'
-
-
- epoch_num=2 #总样本循环次数
- batch_size=7 #训练时的一组数据的大小
- train_data_nums=10
- max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数
-
- train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1)
- # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1)
- train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
- # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False)
-
- # [1]使用epoch方法迭代,TorchDataset的参数repeat=1
- for epoch in range(epoch_num):
- for batch_image, batch_label in train_loader:
- image=batch_image[0,:]
- image=image.numpy()#image=np.array(image)
- image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- image_processing.cv_show_image("image",image)
- print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
- # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
-
- '''
- 下面两种方式,TorchDataset设置repeat=None可以实现无限循环,退出循环由max_iterate设定
- '''
- train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None)
- train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
- # [2]第2种迭代方法
- for step, (batch_image, batch_label) in enumerate(train_loader):
- image=batch_image[0,:]
- image=image.numpy()#image=np.array(image)
- image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- image_processing.cv_show_image("image",image)
- print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label))
- # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
- if step>=max_iterate:
- break
- # [3]第3种迭代方法
- # for step in range(max_iterate):
- # batch_image, batch_label=train_loader.__iter__().__next__()
- # image=batch_image[0,:]
- # image=image.numpy()#image=np.array(image)
- # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
- # image_processing.cv_show_image("image",image)
- # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
- # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。