赞
踩
目录
networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科
Gallery — NetworkX 3.1 documentation
无向图和有向图的区别:在生成图的时候已经选定。
- import networkx as nx
- import matplotlib.pyplot as plt
-
- G = nx.Graph()
- G.add_edge(1, 2)
- G.add_edge(1, 3)
- G.add_edge(1, 5)
- G.add_edge(2, 3)
- G.add_edge(3, 4)
- G.add_edge(4, 5)
-
- # explicitly set positions
- pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}
-
- options = {
- "font_size": 36,
- "node_size": 3000,
- "node_color": "white",
- "edgecolors": "black",
- "linewidths": 5,
- "width": 5,
- }
- nx.draw_networkx(G, pos, **options)
-
- # Set margins for the axes so that nodes aren't clipped
- ax = plt.gca()
- ax.margins(0.20)
- plt.axis("off")
- plt.show()
效果图:
- G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])
-
- # group nodes by column
- left_nodes = [0, 1, 2]
- middle_nodes = [3, 4]
- right_nodes = [5, 6]
-
- # set the position according to column (x-coord)
- pos = {n: (0, i) for i, n in enumerate(left_nodes)}
- pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
- pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})
-
- nx.draw_networkx(G, pos, **options)
-
- # Set margins for the axes so that nodes aren't clipped
- ax = plt.gca()
- ax.margins(0.20)
- plt.axis("off")
- plt.show()
重点语句:G = nx.grid_2d_graph(5, 5)
- import matplotlib.pyplot as plt
- import networkx as nx
-
- G = nx.grid_2d_graph(5, 5) # 5x5 grid
-
- # print the adjacency list
- for line in nx.generate_adjlist(G):
- print(line)
- # write edgelist to grid.edgelist
- nx.write_edgelist(G, path="grid.edgelist", delimiter=":")
- # read edgelist from grid.edgelist
- H = nx.read_edgelist(path="grid.edgelist", delimiter=":")
-
- pos = nx.spring_layout(H, seed=200)
- nx.draw(H, pos)
- plt.show()
用户指定环的位置后画出:
代码
- import matplotlib.pyplot as plt
- import networkx as nx
- import numpy as np
-
- G = nx.path_graph(20) # An example graph
- center_node = 5 # Or any other node to be in the center
- edge_nodes = set(G) - {center_node}
- # Ensures the nodes around the circle are evenly distributed
- pos = nx.circular_layout(G.subgraph(edge_nodes))
- pos[center_node] = np.array([0, 0]) # manually specify node position
- nx.draw(G, pos, with_labels=True)
- plt.show()
示例图
示例代码
- import itertools
- import matplotlib.pyplot as plt
- import networkx as nx
-
- subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3]
- subset_color = [
- "gold",
- "violet",
- "violet",
- "violet",
- "violet",
- "limegreen",
- "limegreen",
- "darkorange",
- ]
-
-
- def multilayered_graph(*subset_sizes):
- extents = nx.utils.pairwise(itertools.accumulate((0,) + subset_sizes))
- layers = [range(start, end) for start, end in extents]
- G = nx.Graph()
- for i, layer in enumerate(layers):
- G.add_nodes_from(layer, layer=i)
- for layer1, layer2 in nx.utils.pairwise(layers):
- G.add_edges_from(itertools.product(layer1, layer2))
- return G
-
-
- G = multilayered_graph(*subset_sizes)
- color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)]
- pos = nx.multipartite_layout(G, subset_key="layer")
- plt.figure(figsize=(8, 8))
- nx.draw(G, pos, node_color=color, with_labels=False)
- plt.axis("equal")
- plt.show()
此示例展示了使用两种常用技术可视化节点度分布的几种方法:度秩图和度直方图。
在此示例中,生成了一个包含 100 个节点的随机图。确定每个节点的度数,并生成一个显示三件事的图形:1. 连通分量的子图 2. 图的度秩图,以及 3. 度直方图
- import networkx as nx
- import numpy as np
- import matplotlib.pyplot as plt
-
- G = nx.gnp_random_graph(100, 0.02, seed=10374196)
-
- degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
- dmax = max(degree_sequence)
-
- fig = plt.figure("Degree of a random graph", figsize=(8, 8))
- # Create a gridspec for adding subplots of different sizes
- axgrid = fig.add_gridspec(5, 4)
-
- ax0 = fig.add_subplot(axgrid[0:3, :])
- Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
- pos = nx.spring_layout(Gcc, seed=10396953)
- nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
- nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
- ax0.set_title("Connected components of G")
- ax0.set_axis_off()
-
- ax1 = fig.add_subplot(axgrid[3:, :2])
- ax1.plot(degree_sequence, "b-", marker="o")
- ax1.set_title("Degree Rank Plot")
- ax1.set_ylabel("Degree")
- ax1.set_xlabel("Rank")
-
- ax2 = fig.add_subplot(axgrid[3:, 2:])
- ax2.bar(*np.unique(degree_sequence, return_counts=True))
- ax2.set_title("Degree histogram")
- ax2.set_xlabel("Degree")
- ax2.set_ylabel("# of Nodes")
-
- fig.tight_layout()
- plt.show()
- import matplotlib as mpl
- import matplotlib.pyplot as plt
- import networkx as nx
-
- seed = 13648 # Seed random number generators for reproducibility
- G = nx.random_k_out_graph(10, 3, 0.5, seed=seed)
- pos = nx.spring_layout(G, seed=seed)
-
- node_sizes = [3 + 10 * i for i in range(len(G))]
- M = G.number_of_edges()
- edge_colors = range(2, M + 2)
- edge_alphas = [(5 + i) / (M + 4) for i in range(M)]
- cmap = plt.cm.plasma
-
- nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color="indigo")
- edges = nx.draw_networkx_edges(
- G,
- pos,
- node_size=node_sizes,
- arrowstyle="->",
- arrowsize=10,
- edge_color=edge_colors,
- edge_cmap=cmap,
- width=2,
- )
- # set alpha value for each edge
- for i in range(M):
- edges[i].set_alpha(edge_alphas[i])
-
- pc = mpl.collections.PatchCollection(edges, cmap=cmap)
- pc.set_array(edge_colors)
-
- ax = plt.gca()
- ax.set_axis_off()
- plt.colorbar(pc, ax=ax)
- plt.show()
颜色渐变的边
代码
- import matplotlib.pyplot as plt
- import networkx as nx
-
- G = nx.star_graph(20)
- pos = nx.spring_layout(G, seed=63) # Seed layout for reproducibility
- colors = range(20)
- options = {
- "node_color": "#A0CBE2",
- "edge_color": colors,
- "width": 4,
- "edge_cmap": plt.cm.Blues,
- "with_labels": False,
- }
- nx.draw(G, pos, **options)
- plt.show()
颜色渐变的节点
- import matplotlib.pyplot as plt
- import networkx as nx
-
- G = nx.cycle_graph(24)
- pos = nx.spring_layout(G, iterations=200)
- nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
- plt.show()
使用 NetworkX ego_graph() 函数返回 Barabási-Albert 网络中最大枢纽的主要 egonet 的示例。
- from operator import itemgetter
-
- import matplotlib.pyplot as plt
- import networkx as nx
-
- # Create a BA model graph - use seed for reproducibility
- n = 1000
- m = 2
- seed = 20532
- G = nx.barabasi_albert_graph(n, m, seed=seed)
-
- # find node with largest degree
- node_and_degree = G.degree()
- (largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]
-
- # Create ego graph of main hub
- hub_ego = nx.ego_graph(G, largest_hub)
-
- # Draw graph
- pos = nx.spring_layout(hub_ego, seed=seed) # Seed layout for reproducibility
- nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)
-
- # Draw ego as large and red
- options = {"node_size": 300, "node_color": "r"}
- nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
- plt.show()
- import matplotlib.pyplot as plt
- import networkx as nx
- import numpy.linalg
-
- n = 1000 # 1000 nodes
- m = 5000 # 5000 edges
- G = nx.gnm_random_graph(n, m, seed=5040) # Seed for reproducibility
-
- L = nx.normalized_laplacian_matrix(G)
- e = numpy.linalg.eigvals(L.toarray())
- print("Largest eigenvalue:", max(e))
- print("Smallest eigenvalue:", min(e))
- plt.hist(e, bins=100) # histogram with 100 bins
- plt.xlim(0, 2) # eigenvalues between 0 and 2
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。