当前位置:   article > 正文

简单常用滤波算法C语言实现_c语言实现信号滤波

c语言实现信号滤波

1.限幅滤波算法(程序判断滤波算法)

方法解析:

根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:

如果本次值与上次值之差<=A,则本次值有效,

如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。

优点:

能有效克服因偶然因素引起的脉冲干扰

缺点:

无法抑制那种周期性的干扰,平滑度差

  1. #define A 10
  2. char value;
  3. char filter()
  4. {
  5. char new_value;
  6. new_value = get_ad();
  7. if ( ( new_value - value > A ) || ( value - new_value > A )
  8. return value;
  9. return new_value;
  10. }


2.中位值滤波法

方法解析:

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值

优点:

能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测参数有良好的滤波效果

缺点:

对流量,速度等快速变化的参数不宜

  1. #define N 11
  2. char filter()
  3. {
  4. char value_buf[N];
  5. char count,i,j,temp;
  6. for ( count=0;count<N;count++)
  7. {
  8. value_buf[count] = get_ad();
  9. delay();
  10. }
  11. for (j=0;j<N-1;j++)
  12. {
  13. for (i=0;i<N-j;i++)
  14. {
  15. if ( value_buf[i]>value_buf[i+1] )
  16. {
  17. temp = value_buf[i];
  18. value_buf[i] = value_buf[i+1];
  19. value_buf[i+1] = temp;
  20. }
  21. }
  22. }
  23. return value_buf[(N-1)/2];
  24. }

3.算术平均滤波

方法解析:

连续取N个采样值进行平均运算,N值较大时:信号平滑度较高,但灵敏度较低

N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般12左右。

优点:

适应于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动

缺点:

对于测量速度较慢或要求数据计算速度较快的实时控制并不适用,比较浪费RAM

  1. #define N 12
  2. char filter()
  3. {
  4. int sum = 0;
  5. for ( count=0;count<N;count++)
  6. {
  7. sum + = get_ad();
  8. delay();
  9. }
  10. return (char)(sum/N);


4.递推平均滤波(滑动平均滤波法)

方法解析:

把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出)。

把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:一般12.

优点:

对周期性干扰有良好的抑制作用,平滑度高,适应于高频振荡的系统

缺点:

灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差。不易消除由于脉冲干扰所引起打的采样值偏差,不适用于脉冲干扰比较严重的场合

浪费RAM

  1. #define N 12
  2. char value_buf[N];
  3. char i=0;
  4. char filter()
  5. {
  6. char count;
  7. int sum=0;
  8. value_buf[i++] = get_ad();
  9. if ( i == N ) i = 0;
  10. for ( count=0;count<N,count++)
  11. sum = value_buf[count];
  12. return (char)(sum/N);
  13. }

5.中位值平均滤波法(防脉冲干扰平均滤波法)

方法解析:

相当于中位值滤波+算术平均滤波,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。

N值的选取:3-14

优点:融合了两种滤波法的优点

对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。

缺点:

测量速度较慢,和算法平均滤波一样,浪费RAM。


  1. #define N 12
  2. char filter()
  3. {
  4. char count,i,j;
  5. char value_buf[N];
  6. int sum=0,temp=0;
  7. for (count=0;count<N;count++)
  8. {
  9. value_buf[count] = get_ad();
  10. delay();
  11. }
  12. for (j=0;j<N-1;j++)
  13. {
  14. for (i=0;i<N-j;i++)
  15. {
  16. if ( value_buf[i]>value_buf[i+1] )
  17. {
  18. temp = value_buf[i];
  19. value_buf[i] = value_buf[i+1];
  20. value_buf[i+1] = temp;
  21. }
  22. }
  23. }
  24. for(count=1;count<N-1;count++)
  25. sum += value[count];
  26. return (char)(sum/(N-2));
  27. }

6一阶滞后滤波法

方法解析:

取a=0-1

本次滤波结果=(1-a)*本次采样值+a*上次滤波结果

优点:

对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合

缺点:

相位滞后,灵敏度低,滞后程度取决于a值的大小,不能消除滤波频率高于采样频率的1/2的干扰信号


  1. #define a 50
  2. char value;
  3. char filter()
  4. {
  5. char new_value;
  6. new_value = get_ad();
  7. return (100-a)*value + a*new_value;
  8. }

7.加权递推平均滤波法

方法解析:

是对递推平均滤波法的改进,即不同时刻的数据加以不同的权

通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。

优点:

适用于有较大纯滞后时间常数的对象,和采样周期较短的系统

缺点:

 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。


  1. #define N 12
  2. char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12};
  3. char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12;
  4. char filter()
  5. {
  6. char count;
  7. char value_buf[N];
  8. int sum=0;
  9. for (count=0,count<N;count++)
  10. {
  11. value_buf[count] = get_ad();
  12. delay();
  13. }
  14. for (count=0,count<N;count++)
  15. sum += value_buf[count]*coe[count];
  16. return (char)(sum/sum_coe);
  17. }


8.消抖滤波法

方法解析:

设置一个滤波计数器,将每次采样值与当前有效值比较:

如果采样值=当前有效值,则计数器清零,如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器

优点:

对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动

缺点:

对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统

  1. #define N 12
  2. char filter()
  3. {
  4. char count=0;
  5. char new_value;
  6. new_value = get_ad();
  7. while (value !=new_value);
  8. {
  9. count++;
  10. if (count>=N) return new_value;
  11. delay();
  12. new_value = get_ad();
  13. }
  14. return value;
  15. }

10.低通数字滤波

解析:

低通滤波也称一阶滞后滤波,方法是第N次采样后滤波结果输出值是(1-a)乘第N次采样值加a乘上次滤波结果输出值。可见a<<1。

该方法适用于变化过程比较慢的参数的滤波的C程序函数如下:


  1. float low_filter(float low_buf[])
  2. {
  3. float sample_value;
  4. float X=0.01;
  5. sample_value=(1_X)*low_buf[1]+X*low buf[0];
  6. retrun(sample_value);
  7. }













声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/493724
推荐阅读
相关标签
  

闽ICP备14008679号