赞
踩
摘要:
CVPR2023
事实证明,在临床任务中,来自一组专家的集体见解总是优于个人的最佳诊断。对于医学图像分割任务,现有的基于人工智能的替代研究更多地侧重于开发能够模仿最佳个体的模型,而不是利用专家组的力量。
在本文中,我们介绍了一种基于单一扩散模型的方法,该方法通过学习群体洞察力的分布来产生多个可信的输出。我们提出的模型通过利用扩散的固有随机采样过程,仅使用最小的额外学习来生成分割掩码的分布。我们在三种不同的医学图像模式(CT、超声和MRI)上展示了我们的模型能够在捕获其发生频率的同时产生几种可能的变体。综合结果表明,我们提出的方法在准确性方面优于现有的最先进的模糊分割网络,同时保留了自然发生的变化。我们还提出了一个新的指标来评估多样性以及分割预测的准确性,这与集体见解的临床实践的兴趣相一致。实现代码:https://github.com/aimansnigdha/AmbiguousMedical-Image-Segmentation-using-Diffusion-Models。
1 介绍
诊断是医学的核心部分,在很大程度上依赖于个体医生的评估策略。最近的研究表明,即使是最常见的健康状况,误诊导致潜在的死亡率和发病率也很普遍[32,49]。因此,减少误诊的频率是改善医疗保健的关键一步。医学图像分割是医学诊断的核心环节,对临床结果起着至关重要的作用。基于深度学习的分割网络现在在临床环境中得到了帮助,然而,文献中大多数领先的分割网络都是确定性的[17,23,34,36,41,42,44],这意味着它们预测每个输入图像的单个分割掩码。不像自然的图像,真实的事实不是
医学图像中的确定性,因为不同的诊断医师对异常的类型和程度可能有不同的看法[1,15,37,39]。因此,从医学图像中进行诊断是相当具有挑战性的,而且往往导致评分者之间的一致性很低[22,24,56]。仅依赖像素概率而忽略像素间的协方差可能导致误诊。在临床实践中,汇总多位专家的解释已被证明可以改善诊断并减少假阴性[57]。
事实上,利用多位医学专家的才能已经成为长期临床传统的一部分,如病例会议、专家会诊和肿瘤委员会。通过利用集体智慧的力量,基于团队的决策通过改进诊断提供更安全的医疗保健[32,40]。尽管集体洞察力在医疗保健领域的潜力越来越大
在提高诊断准确性方面,该方法及其含义在自动化医学视觉文献中仍然表现不佳。有人建议,在考虑临床环境中的医生工作流程的同时,使用人工智能可以优化这些流程[40]。
近年来,针对不同医学图像分割任务的专用确定性模型有了显著的改进[13,44,52 - 55,61]。确定性模型因选择最有可能的假设而臭名昭著,即使存在可能导致次优分割的不确定性。为了克服这一点,一些模型将像素不确定性纳入分割任务,然而,它们产生不一致的输出[25,26]。条件变分自编码器(Conditional variational autoencoders, c-V AE)[48]是一种条件生成模型,可以与确定性分割网络融合,通过对输入图像的潜在空间进行采样,产生无限数量的预测。概率U-net及其变体在推理过程中使用这种技术。在这里,潜在空间是从一个被训练成类似于c-V AE的先验网络中采样的[8,29,30]。这种对先验网络的依赖以及仅在分割网络的最高分辨率下注入随机性会产生较少的多样性和模糊的分割预测[46]。
为了克服这个问题,我们引入了一个单一的固有概率模型,没有任何额外的先验网络,它代表了几个专家的集体智慧,以利用诊断管道中的多个合理假设(如图1所示)。扩散概率模型是一类由使用变分推理训练的马尔可夫链组成的生成模型[21]。该模型通过隐空间对数据集的扩散过程进行建模,从而学习数据集的隐结构。通过学习反向扩散过程,训练神经网络去噪使用高斯噪声模糊的噪声图像[50]。最近,人们发现扩散模型在图像生成[14]和喷漆[35]等各种任务中都取得了广泛的成功。还提出了使用扩散模型执行语义分割的某些方法[6,59]。在这里,使用相同的预训练模型的扩散模型的每个采样步骤中的随机元素为从单个输入图像生成多个分割掩码铺平了道路。然而,尽管弥散模型在模糊医学图像分割中具有很大的潜力,但目前还没有对其进行探索。在本文中,我们提出了CIMD(集体智能医疗扩散),它解决了医学图像的模糊分割任务。首先,我们引入了一种新的基于扩散的概率框架,该框架可以从单个输入图像中生成多个逼真的分割蒙版。这是出于我们的论点,即扩散模型的随机抽样过程可以用来对多个合理的注释进行抽样。随机抽样过程还消除了在推理阶段对单独的“先验”分布的需要,这对于基于c-V ae的分割模型对模糊分割的潜在分布进行采样至关重要。我们模型的层次结构也使得在每个时间步上控制多样性成为可能,从而使分割掩模更加真实和异构。最后,为了评估模糊医学图像分割模型,最常用的度量之一是广义能量距离(GED),它将地面真值分布与预测分布相匹配。在现实世界中,对于模棱两可的医学图像分割,地面真值分布的特征只有一组样本。在实践中,GED指标已被证明奖励样本多样性,而不管生成的样本的保真度或与基础事实的匹配程度,这在临床应用中可能是有害的[30]。在医疗实践中,个别评估被人工合并为单一诊断,并根据敏感性进行评估。当实时小组评估发生时,参与者在他们自己之间产生共识。最后,最小协议和最大协议之间的放射科医生也考虑在临床设置。受当前集体洞察力医学实践的启发,我们创造了一个新的度量标准,即CI评分(集体洞察力),它考虑了放射科医生的总体敏感性、普遍共识和差异。综上所述,本工作的主要贡献如下:
•我们提出了一种新的基于扩散的框架:集体智能医疗扩散(CIMD),它真实地模拟了分割掩模的异质性,而不需要任何额外的网络在推理过程中提供先验信息,这与之前的模糊分割工作不同。
•我们重新审视和分析当前评估指标的固有问题,模糊模型的GED,并解释为什么这个指标不足以捕捉模糊模型的性能。我们引入了一个受集体智慧医学启发的新指标,称为CI评分(集体洞察力)。
•我们通过三种医学成像模式证明,CIMD在定量标准方面的表现与现有的模糊图像分割网络相当或更好,同时产生优越的定性结果。
图1所示。a)确定性网络对输入图像产生单一输出。b)基于c-V ae的方法将输入图像的先验信息编码到一个单独的网络中,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。