赞
踩
import torch import torch.nn.functional as F import pdb from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange import numpy as np from functools import partial from tqdm import tqdm class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.1): super().__init__() inner_dim = dim_head*heads self.inner_dim = inner_dim self.heads = heads self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim*3, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask=None): b, n, _, h = *x.shape, self.heads qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale mask_value = -torch.finfo(dots.dtype).max if mask is not None: mask = F.pad(mask.flatten(1), (1, 0), value=True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = rearrange(mask, 'b i -> b () i ()') * \ rearrange(mask, 'b j -> b () () j') dots.masked_fill_(~mask, mask_value) del mask attn = dots.softmax(dim=-1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.1): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), Residual(PreNorm(dim, FeedForward( dim, mlp_dim, dropout=dropout))) ])) def forward(self, x, mask=None): for attn, ff in self.layers: x = attn(x, mask=mask) x = ff(x) return x
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。