赞
踩
这篇文章将讲解如何使用lstm进行时间序列方面的预测,重点讲lstm的应用,原理部分可参考以下两篇文章:
Understanding LSTM Networks LSTM学习笔记
编程环境:python3.5,tensorflow 1.0
本文所用的数据集来自于kesci平台,由云脑机器学习实战训练营提供:真实业界数据的时间序列预测挑战
数据集采用来自业界多组相关时间序列(约40组)与外部特征时间序列(约5组)。本文只使用其中一组数据进行建模。
加载常用的库:
- #加载数据分析常用库
- import pandas as pd
- import numpy as np
- import tensorflow as tf
- from sklearn.metrics import mean_absolute_error,mean_squared_error
- from sklearn.preprocessing import MinMaxScaler
- import matplotlib.pyplot as plt
- % matplotlib inline
- import warnings
- warnings.filterwarnings('ignore')
- path = '../input/industry/industry_timeseries/timeseries_train_data/11.csv'
- data11 = pd.read_csv(path,names=['年','月','日','当日最高气温','当日最低气温','当日平均气温','当日平均湿度','输出'])
- data11.head()
年 | 月 | 日 | 当日最高气温 | 当日最低气温 | 当日平均气温 | 当日平均湿度 | 输出 | |
---|---|---|---|---|---|---|---|---|
0 | 2015 | 2 | 1 | 1.9 | -0.4 | 0.7875 | 75.000 | 814.155800 |
1 | 2015 | 2 | 2 | 6.2 | -3.9 | 1.7625 | 77.250 | 704.251112 |
2 | 2015 | 2 | 3 | 7.8 | 2.0 | 4.2375 | 72.750 | 756.958978 |
3 | 2015 | 2 | 4 | 8.5 | -1.2 | 3.0375 | 65.875 | 640.645401 |
4 | 2015 | 2 | 5 | 7.9 | -3.6 | 1.8625 | 55.375 | 631.725130 |
- ##load data(本文以第一个表为例,其他表类似,不再赘述)
- f=open('../input/industry/industry_timeseries/timeseries_train_data/11.csv')
- df=pd.read_csv(f) #读入数据
- data=df.iloc[:,3:8].values #取第3-7列
- #定义常量
- rnn_unit=10 #hidden layer units
- input_size=4
- output_size=1
- lr=0.0006 #学习率
- tf.reset_default_graph()
- #输入层、输出层权重、偏置
- weights={
- 'in':tf.Variable(tf.random_normal([input_size,rnn_unit])),
- 'out':tf.Variable(tf.random_normal([rnn_unit,1]))
- }
- biases={
- 'in':tf.Variable(tf.constant(0.1,shape=[rnn_unit,])),
- 'out':tf.Variable(tf.constant(0.1,shape=[1,]))
- }
- def get_data(batch_size=60,time_step=20,train_begin=0,train_end=487):
- batch_index=[]
-
- scaler_for_x=MinMaxScaler(feature_range=(0,1)) #按列做minmax缩放
- scaler_for_y=MinMaxScaler(feature_range=(0,1))
- scaled_x_data=scaler_for_x.fit_transform(data[:,:-1])
- scaled_y_data=scaler_for_y.fit_transform(data[:,-1])
-
- label_train = scaled_y_data[train_begin:train_end]
- label_test = scaled_y_data[train_end:]
- normalized_train_data = scaled_x_data[train_begin:train_end]
- normalized_test_data = scaled_x_data[train_end:]
-
- train_x,train_y=[],[] #训练集x和y初定义
- for i in range(len(normalized_train_data)-time_step):
- if i % batch_size==0:
- batch_index.append(i)
- x=normalized_train_data[i:i+time_step,:4]
- y=label_train[i:i+time_step,np.newaxis]
- train_x.append(x.tolist())
- train_y.append(y.tolist())
- batch_index.append((len(normalized_train_data)-time_step))
-
- size=(len(normalized_test_data)+time_step-1)//time_step #有size个sample
- test_x,test_y=[],[]
- for i in range(size-1):
- x=normalized_test_data[i*time_step:(i+1)*time_step,:4]
- y=label_test[i*time_step:(i+1)*time_step]
- test_x.append(x.tolist())
- test_y.extend(y)
- test_x.append((normalized_test_data[(i+1)*time_step:,:4]).tolist())
- test_y.extend((label_test[(i+1)*time_step:]).tolist())
-
- return batch_index,train_x,train_y,test_x,test_y,scaler_for_y
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- #——————————————————定义神经网络变量——————————————————
- def lstm(X):
- batch_size=tf.shape(X)[0]
- time_step=tf.shape(X)[1]
- w_in=weights['in']
- b_in=biases['in']
- input=tf.reshape(X,[-1,input_size]) #需要将tensor转成2维进行计算,计算后的结果作为隐藏层的输入
- input_rnn=tf.matmul(input,w_in)+b_in
- input_rnn=tf.reshape(input_rnn,[-1,time_step,rnn_unit]) #将tensor转成3维,作为lstm cell的输入
- cell=tf.contrib.rnn.BasicLSTMCell(rnn_unit)
- #cell=tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(rnn_unit)
- init_state=cell.zero_state(batch_size,dtype=tf.float32)
- output_rnn,final_states=tf.nn.dynamic_rnn(cell, input_rnn,initial_state=init_state, dtype=tf.float32) #output_rnn是记录lstm每个输出节点的结果,final_states是最后一个cell的结果
- output=tf.reshape(output_rnn,[-1,rnn_unit]) #作为输出层的输入
- w_out=weights['out']
- b_out=biases['out']
- pred=tf.matmul(output,w_out)+b_out
- return pred,final_states
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
- #——————————————————训练模型——————————————————
- def train_lstm(batch_size=80,time_step=15,train_begin=0,train_end=487):
- X=tf.placeholder(tf.float32, shape=[None,time_step,input_size])
- Y=tf.placeholder(tf.float32, shape=[None,time_step,output_size])
- batch_index,train_x,train_y,test_x,test_y,scaler_for_y = get_data(batch_size,time_step,train_begin,train_end)
- pred,_=lstm(X)
- #损失函数
- loss=tf.reduce_mean(tf.square(tf.reshape(pred,[-1])-tf.reshape(Y, [-1])))
- train_op=tf.train.AdamOptimizer(lr).minimize(loss)
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- #重复训练5000次
- iter_time = 5000
- for i in range(iter_time):
- for step in range(len(batch_index)-1):
- _,loss_=sess.run([train_op,loss],feed_dict={X:train_x[batch_index[step]:batch_index[step+1]],Y:train_y[batch_index[step]:batch_index[step+1]]})
- if i % 100 == 0:
- print('iter:',i,'loss:',loss_)
- ####predict####
- test_predict=[]
- for step in range(len(test_x)):
- prob=sess.run(pred,feed_dict={X:[test_x[step]]})
- predict=prob.reshape((-1))
- test_predict.extend(predict)
-
- test_predict = scaler_for_y.inverse_transform(test_predict)
- test_y = scaler_for_y.inverse_transform(test_y)
- rmse=np.sqrt(mean_squared_error(test_predict,test_y))
- mae = mean_absolute_error(y_pred=test_predict,y_true=test_y)
- print ('mae:',mae,' rmse:',rmse)
- return test_predict
![](https://csdnimg.cn/release/blogv2/dist/pc/img/newCodeMoreWhite.png)
test_predict = train_lstm(batch_size=80,time_step=15,train_begin=0,train_end=487)
- iter: 3900 loss: 0.000505382
- iter: 4000 loss: 0.000502154
- iter: 4100 loss: 0.000503413
- iter: 4200 loss: 0.00140424
- iter: 4300 loss: 0.000500015
- iter: 4400 loss: 0.00050004
- iter: 4500 loss: 0.000498159
- iter: 4600 loss: 0.000500861
- iter: 4700 loss: 0.000519379
- iter: 4800 loss: 0.000499999
- iter: 4900 loss: 0.000501265
- mae: 121.183626208 rmse: 162.049017904
- plt.figure(figsize=(24,8))
- plt.plot(data[:, -1])
- plt.plot([None for _ in range(487)] + [x for x in test_predict])
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。