赞
踩
对语言模型的通用声学攻击主要涉及到通过生成对抗性扰动来干扰或欺骗语音识别系统。这种攻击可以通过多种方式实现,包括但不限于基于深度学习的方法和特定的攻击策略。
通用音频对抗性扰动生成器(UAPG)是一种有效的工具,它能够在任意良性音频输入上强加对抗性扰动,从而导致错误分类。这种方法的优势在于其高效性,实验表明它比最先进的音频对抗攻击方法实现了高达167倍的加速。
此外,对于语音识别系统,攻击者可以利用已知的攻击方法,如Wav-to-API(WTA)攻击和Wav-air-API(WAA)攻击,这些攻击通过网络或无线方式进行。这些攻击通常针对语音识别系统中的声学模型和语言模型,试图通过修改输入数据来误导系统的输出。
该方法通过贪婪迭代方法来解决声学普遍对抗性扰动的优化问题,并设计新的目标函数,以确保攻击在最小化对抗性扰动的可感知性和提高成功攻击的准确性方面具有更高的准确性。研究结果表明,即使音频训练数据样本量最小(即每个类别一个),IG-UAP方法产生的声学通用性对抗性扰动也能获得有效的攻击结果。此外,人耳很难察觉原始数据信息的丢失和对抗性扰动的增加(对于目标攻击的情况,小样本数据集的ASR值范围为82.4%到90.2%)。
关键步骤如下:
a. 首先,将原始声纹信号作为输入,计算其在模型中的嵌入向量(即模型在最后一层全连接层之前的输出)。
b. 然后,根据模型梯度和嵌入向量,计算对抗扰动的方向。这个方向应该使得添加扰动后的声纹信号在嵌入空间中尽可能接近目标声纹的嵌入向量。
c. 最后,根据计算出的对抗扰动方向和扰动强度,生成对抗扰动。将这个扰动添加到原始声纹信号中,即可得到对抗样本。
利用GAN生成对抗样本以攻击音频分类模型的方法。在GAN中,生成器(Generator)和判别器(Discriminator)通过相互对抗的方式不断优化,最终生成器能够生成逼真的样本,而判别器能够准确判断样本的真实性。
关键步骤如下:
在该方法中,GAN被实现以真实信号幅度谱作为输入来生成幅度谱扰动,并且对抗性幅度谱作为真实信号幅度谱和扰动的叠加而获得。此外,采用短时处理方案灵活调整生成器的输入长度,以平衡计算复杂度和攻击性能。通过对抗性训练,StS-GAN学习生成具有与真实信号相似的时谱特征的对抗性示例。习得的扰动往往具有较小的能量,使得它们不那么显着,并且难以被人类感知区分。
在典型的音频对抗样本生成算法FoolHD模型的基础上引入了自注意力机制来改进对抗样本生成,该方法称为FoolHD⁃MHSA。首先,使用卷积神经网络作为编码器来提取输入音频频谱的对抗扰动谱图;然后利用自注意力机制从全局角度提取扰动谱不同部分特征的关联特征,同时将网络聚焦到扰动谱中的关键信息、抑制无用信息。
深度学习模型的优化与改进:目前已有研究通过训练深度学习模型来分析键盘击键声音以窃取数据,准确率高达92% 。未来的研究可以进一步优化这些模型的准确性和效率,例如通过增强模型的特征提取能力或使用更先进的网络结构。
对抗样本攻击的防御机制:已有研究表明,基于深度学习的声学系统对对抗样本的攻击具有脆弱性 。因此,开发新的防御机制,如基于生成对抗网络(GAN)的方法,可以帮助提高系统对恶意输入的抵抗力。
超声波声学攻击的防御:美国国防高级研究计划局(DARPA)正在开发新方法来识别和防御超声波声学攻击,这种攻击可以远程访问智能设备。研究人员希望利用最新的研究成果来开发有效的防御工具。
语音对抗攻击与防御技术的发展:语音对抗样本攻击包括无目标攻击和有目标攻击,以及白盒攻击和黑盒攻击等多种形式 。未来的研究需要在这方面进行更深入的探索,以便更好地理解和防御这些攻击。
声音克隆技术的安全风险:声音克隆技术虽然为用户带来了新奇体验,但也存在安全风险,如被用于诈骗 。因此,研究如何防止这种技术被滥用是未来的一个重要方向。
通用声学对抗攻击的研究:已有研究提出了针对语音基础模型的通用声学对抗攻击。未来的研究可以进一步探索这种攻击的具体实施方式及其防御策略。
ART (Adversarial Robustness Toolbox): 一个Python库,用于评估和增强机器学习模型的鲁棒性。它支持多种数据类型,包括音频,并提供了一系列对抗性攻击和防御技术。文档详见:https://github.com/Trusted-AI/adversarial-robustness-toolbox
librosa : 一个用于音频分析和处理的Python库。它可以用于预处理音频数据,提取特征,以及生成对抗样本。 librosa 是基于 numpy和 scipy的,因此它可以与这些库无缝集成,并且可以与其他数据处理和机器学习库(如pandas、scikit-learn、tensorflow 和 pytorch)一起使用。安装与使用文档见: https://librosa.github.io/librosa/install.html
Adversarial Audio Toolbox (AAT): 开源工具箱,专门用于生成和评估音频对抗样本。它提供了多种攻击和防御策略,以及用于音频处理和特征提取的工具。
TensorFlow Audio Adversarial Examples (TF-AAE): 基于TensorFlow的开源项目,用于生成音频对抗样本。它包含了一些流行的攻击方法,如FGSM(Fast Gradient Sign Method)、PGD(Projected Gradient Descent)等。
DeepRobust: 基于PyTorch的开源库,提供了多种对抗性攻击和防御方法,适用于图像、音频和文本数据。
AudioAdversarial_examples: 包含了一些音频对抗样本的示例,以及生成这些样本的代码。这些示例可以帮助研究人员了解不同类型的音频对抗性攻击。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。