赞
踩
》》点赞,收藏+关注,理财&技术不迷路《《
目录:
pandas = numpy + 标签索引
如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而,有数值标签。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。
要使用pandas,首先需要了解他主要两个数据结构:Series和DataFrame。
Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建。
Pandas纳入大量库和标准数据模型,提供高效的操作数据集所需的工具。
Pandas提供大量能使我们快速便捷地处理数据的函数和方法。
Pandas是字典形式,基于NumPy创建,让NumPy为中心的应用变得更加简单。
Series的字符串表现形式为:索引在左边,值在右边。由于我们没有为数据指定索引。于是会自动创建一个0到N-1(N为长度)的整数型索引。
DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。
2.1 Series:
pandas.Series( data, index, dtype, copy)
series,只是一个一维数据结构,它由index和value组成。
2.2 DataFrame
pandas.DataFrame( data, index, columns, dtype, copy)
pandas中的时间序列date_range函数:
语法:pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)
该函数主要用于生成一个固定频率的时间索引,在调用构造方法时,必须指定start、end、periods中的两个参数值,否则报错。
主要参数说明:
periods:固定时期,取值为整数或None
freq:日期偏移量,取值为string或DateOffset,默认为'D'
normalize:若参数为True表示将start、end参数值正则化到午夜时间戳
name:生成时间索引对象的名称,取值为string或None。
closed:可以理解成在closed=None情况下返回的结果中,若closed=‘left’表示在返回的结果基础上,再取左开右闭的结果,若closed='right'表示在返回的结果基础上,再取做闭右开的结果
Series 和 DataFrame区别:
series,只是一个一维数据结构,它由index和value组成。
dataframe,是一个二维结构,除了拥有index和value之外,还拥有column。
Series 和 DataFrame联系:
dataframe由多个series组成,无论是行还是列,单独拆分出来都是一个series。
# 两种方式定义DatafFrame:
1.字典方式;一列代替一列数字,一列代替每一行数字。
2.用numpy直接诶导入数据直接生成DataFrame
1.字典创建 DataFrame
<
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。