赞
踩
(注意:Encoder_input,Decoder_input,Decoder_output:训练标签设定,设定模式不能出错,否则模型训练将极其难达到想要的效果,即使loss已经很低了,甚至模型非常优化也不能达到效果)
Transformer原理:
inputs:Encoder_input
Outputs:Decoder_input
Outputs probility:Decoder_output
## 关键部分代码实现:
masked Loss:
(一)
import torch import torch.nn as nn import torch.nn.functional as F import numpy # 关于Word embedding,序列建模为例 # 考source sentence和target sentence # 构建序列,序列字符以其在此表中索引形式表示(通常还有start < 字符,本篇中各part省略) batch_size = 2 # 单词表大小(样本最大单词数) max_num_src_words = 8 max_num_tgt_words = 8 model_dim = 8 # 序列最大长度 max_src_seg_len = 5 max_tgt_seg_len = 5 max_position_len = 5 # src_len = torch.randint(2,5,(batch_size,)) # tgt_len = torch.randint(2,5,(batch_size,)) src_len = torch.Tensor([2, 4]).to(torch.int32) tgt_len = torch.Tensor([4, 3]).to(torch.int32) # 单词索引构成源句子和目标句子,且做了padding,默认padding=0 src_seq = torch.cat( [torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L,)), (0, max_src_seg_len - L)), 0) for L in src_len]) tgt_seq = torch.cat( [torch.unsqueeze(F.pad(torch.randint(1, max_num_tgt_words, (L,)), (0, max_tgt_seg_len - L)), 0) for L in tgt_len]) # 构造Word embedding,+1指padding的embedding编码 src_embedding_table = nn.Embedding(max_num_src_words + 1, model_dim) tgt_embedding_table = nn.Embedding(max_num_tgt_words + 1, model_dim) src_embedding = src_embedding_table(src_seq) tgt_embedding = tgt_embedding_table(tgt_seq) # 构造position embedding(忽略start < 字符) pos_matric = torch.arange(max_position_len).reshape((-1, 1)) # torch.arange(0,8,2)其中8为对应max_src_seg_len或max_tgt_seg_len,依据encoder或decoder i_matric = torch.pow(10000, torch.arange(0, 8, 2).reshape((1, -1))) / model_dim pe_embedding_table = torch.zeros(max_position_len, model_dim) pe_embedding_table[:, 1::2] = torch.sin(pos_matric / i_matric) pe_embedding_table[:, 0::2] = torch.cos(pos_matric / i_matric) pe_embedding = nn.Embedding(max_position_len, model_dim) pe_embedding.weight = nn.Parameter(pe_embedding_table, requires_grad=False) src_pos = torch.cat([torch.unsqueeze(torch.arange(max(src_len), 0) for _ in src_len)]).to(torch.int32) tgt_pos = torch.cat([torch.unsqueeze(torch.arange(max(tgt_len), 0) for _ in tgt_len)]).to(torch.int32) src_pe_embedding = pe_embedding(src_pos) tgt_pe_embedding = pe_embedding(tgt_pos) # 构造encoder的self-attention mask # mask的shape:[batch_size,max_src_len,max_src_len],只为1或-inf valid_encoder_pos = torch.unsqueeze( torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max(src_len) - L)), 0) for L in src_len]), 2) valid_encoder_pos_matrix = torch.bmm(valid_encoder_pos, valid_encoder_pos.transpose(1, 2)) invalid_encoder_pos_matrix = 1 - valid_encoder_pos_matrix mask_encoder_self_attention = invalid_encoder_pos_matrix.to(torch.bool) score = torch.randn(batch_size, max(src_len), max(src_len)) masked_score = score.masked_fill(mask_encoder_self_attention, -1e9) prob_encoder = F.softmax(masked_score, -1) # # softax演示,scale(根号dk)的重要性 # alphal1 = 0.1 # alphal2 = 10 # score = torch.randn(5) # prob1 = F.softmax(score*alphal1,-1) # prob2 = F.softmax(score*alphal2,-1) # def softmax_func(score): # return F.softmax(score) # jaco_matric1 = torch.autograd.functional.jacobian(softmax_func,score*alphal1) # jaco_matric2 = torch.autograd.functional.jacobian(softmax_func,score*alphal2) # 构造 intro-attention(cross attention)的mask # Q @ K^T shape:[batch_size,tgt_seq_len,src_seq_len] valid_encoder_pos = torch.unsqueeze( torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max(src_len) - L)), 0) for L in src_len]), 2) valid_decoder_pos = torch.unsqueeze( torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max(tgt_len) - L)), 0) for L in tgt_len]), 2) valid_cross_pos_matrix = torch.bmm(valid_encoder_pos, valid_decoder_pos.transpose(1, 2)) invalid_cross_pos_matrix = 1 - valid_cross_pos_matrix mask_cross_attention = invalid_cross_pos_matrix.to(torch.bool) # 构造decoder的self-attention mask(下三角阵) valid_decoder_tri_matrix = torch.cat( [torch.unsqueeze(F.pad(torch.tril(torch.ones(L, L)), (0, max(tgt_len) - L, 0, max(tgt_len) - L)), 0) for L in tgt_len]) invalid_decoder_tri_matrix = 1 - valid_decoder_tri_matrix invalid_decoder_tri_matrix = invalid_decoder_tri_matrix.to(torch.bool) score = torch.randn(batch_size, max(tgt_len), max(tgt_len)) masked_score = score.masked_fill(invalid_decoder_tri_matrix) prob_decoder = F.softmax(masked_score, -1) # 构造scaled self-attention(多头的每个注意力头) def scaled_dot_product_attention(Q, K, V, attn_mask): # shape of Q,K,V: [batch_size*num_head,seq_len,model_dim/num_head] torch.bmm(Q, K.transpose(-2, -1)) / torch.sqrt(model_dim) masked_score = score.masked_fill(attn_mask, -1e9) prob = F.softmax(masked_score, -1) context = torch.bmm(prob, V) return context
(二)
def get_attn_subsequence_mask(seq): # seq: [batch_size, tgt_len] attn_shape = [seq.size(0), seq.size(1), seq.size(1)] # 生成上三角矩阵,[batch_size, tgt_len, tgt_len] subsequence_mask = np.triu(np.ones(attn_shape), k=1) subsequence_mask = torch.from_numpy(subsequence_mask).byte() # [batch_size, tgt_len, tgt_len] return subsequence_mask class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V, attn_mask): # Q: [batch_size, n_heads, len_q, d_k] # K: [batch_size, n_heads, len_k, d_k] # V: [batch_size, n_heads, len_v(=len_k), d_v] # attn_mask: [batch_size, n_heads, seq_len, seq_len] scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k] scores.masked_fill_(attn_mask, -1e9) # 如果是停用词P就等于 0 attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v] return context, attn # MultiHeadAttention # # input_K: [batch_size, len_k, d_model] # input_V: [batch_size, len_v(=len_k), d_model] # attn_mask: [batch_size, seq_len, seq_len] residual, batch_size = input_Q, input_Q.size(0) Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k] K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k] V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v] attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # context: [batch_size, n_heads, len_q, d_v] # attn: [batch_size, n_heads, len_q, len_k] context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] def get_attn_pad_mask(seq_q, seq_k): batch_size, len_q = seq_q.size() # seq_q 用于升维,为了做attention,mask score矩阵用的 batch_size, len_k = seq_k.size() pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k] return pad_attn_mask.expand(batch_size, len_q, len_k) # 扩展成多维度 [batch_size, len_q, len_k] #### (一) #### class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pos_table = np.array([ [pos / np.power(10000, 2 * i / d_model) for i in range(d_model)] if pos != 0 else np.zeros(d_model) for pos in range(max_len)]) pos_table[1:, 0::2] = np.sin(pos_table[1:, 0::2]) # 字嵌入维度为偶数时 pos_table[1:, 1::2] = np.cos(pos_table[1:, 1::2]) # 字嵌入维度为奇数时 self.pos_table = torch.FloatTensor(pos_table) # enc_inputs: [seq_len, d_model] def forward(self, enc_inputs): # enc_inputs: [batch_size, seq_len, d_model] enc_inputs += self.pos_table[:enc_inputs.size(1), :] return self.dropout(enc_inputs) #### (二) #### pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,步长为2,其实代表的就是偶数位置 pe[:, 1::2] = torch.cos(position * div_term) # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,步长为2,其实代表的就是奇数位置 # 下面这行代码之后,我们得到的pe形状是:[max_len * 1 * d_model] pe = pe.unsqueeze(0).transpose(0, 1) ## 自回归嵌套(一) self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) ## 自回归嵌套(二) import copy def clones(module, N): "Produce N identical layers." return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) self.encoder = Encoder(EncoderLayer(config.d_model, deepcopy(attn), deepcopy(ff), dropout), N) self.src_embed = nn.Sequential(Embeddings(config.d_model, src_vocab), deepcopy(position)) # Embeddings followed by PE #### 其他按pytorch API中来即可
注意:Encoder_input,Decoder_input,Decoder_output:训练标签设定,设定模式不能出错,否则模型训练将极其难达到想要的效果,即使loss已经很低了,甚至模型非常优化也不能达到效果
PLUS:训练和测试的Decoder_input不同,训练时是下三角阵mask,测试时一个一个输入
示例一(Encoder_input,Decoder_input,Decoder_output分为正确设定/错误设定,实验结果图片中展现效果差异):
import math import torch import numpy as np import torch.nn as nn import torch.optim as optim import torch.utils.data as Data # 自制数据集 # #正确设定EG: Encoder_input Decoder_input Decoder_output # sentences = [['我 是 学 生 P', 'S I am a student', 'I am a student E'], # S: 开始符号 # ['我 喜 欢 学 习', 'S I like learning P', 'I like learning P E'], # E: 结束符号 # ['我 是 男 生 P', 'S I am a boy', 'I am a boy E'],# P: 占位符号,如果当前句子不足固定长度用P占位 pad补0 # ['ils regardent . P P','S they are watching .','they are watching . E']] ##----注意:Encoder_input,Decoder_input,Decoder_output的设定模式不能出错,否则模型训练将极其难达到想要的效果,即使loss已经很低了-----## # 错误设定EG: Encoder_input Decoder_input Decoder_output sentences = [['我 是 学 生 P', 'I am a student E', 'I am a student E'], # S: 开始符号 ['我 喜 欢 学 习', 'I like learning E P', 'I like learning E P'], # E: 结束符号 ['我 是 男 生 P', 'I am a boy E', 'I am a boy E'],# P: 占位符号,如果当前句子不足固定长度用P占位 pad补0 ['ils regardent . P P','they are watching . E','they are watching . E']] src_vocab = {'P': 0, '我': 1, '是': 2, '学': 3, '生': 4, '喜': 5, '欢': 6, '习': 7, '男': 8,'ils':9,'regardent':10,'.':11} # 词源字典 字:索引 src_idx2word = {src_vocab[key]: key for key in src_vocab} src_vocab_size = len(src_vocab) # 字典字的个数 tgt_vocab = {'S': 0, 'E': 1, 'P': 2, 'I': 3, 'am': 4, 'a': 5, 'student': 6, 'like': 7, 'learning': 8, 'boy': 9,'they':10,'are':11,'watching':12,'.':13} idx2word = {tgt_vocab[key]: key for key in tgt_vocab} # 把目标字典转换成 索引:字的形式 tgt_vocab_size = len(tgt_vocab) # 目标字典尺寸 src_len = len(sentences[0][0].split(" ")) # Encoder输入的最大长度 5 tgt_len = len(sentences[0][1].split(" ")) # Decoder输入输出最大长度 5 # 把sentences 转换成字典索引 def make_data(sentences): enc_inputs, dec_inputs, dec_outputs = [], [], [] for i in range(len(sentences)): enc_input = [[src_vocab[n] for n in sentences[i][0].split()]] dec_input = [[tgt_vocab[n] for n in sentences[i][1].split()]] dec_output = [[tgt_vocab[n] for n in sentences[i][2].split()]] enc_inputs.extend(enc_input) dec_inputs.extend(dec_input) dec_outputs.extend(dec_output) return torch.LongTensor(enc_inputs), torch.LongTensor(dec_inputs), torch.LongTensor(dec_outputs) enc_inputs, dec_inputs, dec_outputs = make_data(sentences) # print(enc_inputs) # print(dec_inputs) # print(dec_outputs) # 自定义数据集函数 class MyDataSet(Data.Dataset): def __init__(self, enc_inputs, dec_inputs, dec_outputs): super(MyDataSet, self).__init__() self.enc_inputs = enc_inputs self.dec_inputs = dec_inputs self.dec_outputs = dec_outputs def __len__(self): return self.enc_inputs.shape[0] def __getitem__(self, idx): return self.enc_inputs[idx], self.dec_inputs[idx], self.dec_outputs[idx] loader = Data.DataLoader(MyDataSet(enc_inputs, dec_inputs, dec_outputs), 2, True) d_model = 512 # 字 Embedding 的维度 d_ff = 2048 # 前向传播隐藏层维度 d_k = d_v = 64 # K(=Q), V的维度 n_layers = 6 # 有多少个encoder和decoder n_heads = 8 # Multi-Head Attention设置为8 ###############################构建 Transformer :type2 ####################### def get_attn_subsequence_mask(seq): # seq: [batch_size, tgt_len] attn_shape = [seq.size(0), seq.size(1), seq.size(1)] # 生成上三角矩阵,[batch_size, tgt_len, tgt_len] subsequence_mask = np.triu(np.ones(attn_shape), k=1) subsequence_mask = torch.from_numpy(subsequence_mask).byte() # [batch_size, tgt_len, tgt_len] return subsequence_mask class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V, attn_mask): # Q: [batch_size, n_heads, len_q, d_k] # K: [batch_size, n_heads, len_k, d_k] # V: [batch_size, n_heads, len_v(=len_k), d_v] # attn_mask: [batch_size, n_heads, seq_len, seq_len] scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, len_q, len_k] scores.masked_fill_(attn_mask, -1e9) # 如果是停用词P就等于 0 attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v] return context, attn class MultiHeadAttention(nn.Module): def __init__(self): super(MultiHeadAttention, self).__init__() self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False) self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False) self.fc = nn.Linear(n_heads * d_v, d_model, bias=False) def forward(self, input_Q, input_K, input_V, attn_mask): # input_Q: [batch_size, len_q, d_model] # input_K: [batch_size, len_k, d_model] # input_V: [batch_size, len_v(=len_k), d_model] # attn_mask: [batch_size, seq_len, seq_len] residual, batch_size = input_Q, input_Q.size(0) Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k] K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k] V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v] attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len] context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask) # context: [batch_size, n_heads, len_q, d_v] # attn: [batch_size, n_heads, len_q, len_k] context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v) # context: [batch_size, len_q, n_heads * d_v] output = self.fc(context) # [batch_size, len_q, d_model] return nn.LayerNorm(d_model)(output + residual), attn class PoswiseFeedForwardNet(nn.Module): def __init__(self): super(PoswiseFeedForwardNet, self).__init__() self.fc = nn.Sequential( nn.Linear(d_model, d_ff, bias=False), nn.ReLU(), nn.Linear(d_ff, d_model, bias=False)) def forward(self, inputs): # inputs: [batch_size, seq_len, d_model] residual = inputs output = self.fc(inputs) return nn.LayerNorm(d_model)(output + residual) # [batch_size, seq_len, d_model] def get_attn_pad_mask(seq_q, seq_k): batch_size, len_q = seq_q.size() # seq_q 用于升维,为了做attention,mask score矩阵用的 batch_size, len_k = seq_k.size() pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k] return pad_attn_mask.expand(batch_size, len_q, len_k) # 扩展成多维度 [batch_size, len_q, len_k] class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pos_table = np.array([ [pos / np.power(10000, 2 * i / d_model) for i in range(d_model)] if pos != 0 else np.zeros(d_model) for pos in range(max_len)]) pos_table[1:, 0::2] = np.sin(pos_table[1:, 0::2]) # 字嵌入维度为偶数时 pos_table[1:, 1::2] = np.cos(pos_table[1:, 1::2]) # 字嵌入维度为奇数时 self.pos_table = torch.FloatTensor(pos_table) # enc_inputs: [seq_len, d_model] def forward(self, enc_inputs): # enc_inputs: [batch_size, seq_len, d_model] enc_inputs += self.pos_table[:enc_inputs.size(1), :] return self.dropout(enc_inputs) class EncoderLayer(nn.Module): def __init__(self): super(EncoderLayer, self).__init__() self.enc_self_attn = MultiHeadAttention() # 多头注意力机制 self.pos_ffn = PoswiseFeedForwardNet() # 前馈神经网络 def forward(self, enc_inputs, enc_self_attn_mask): # enc_inputs: [batch_size, src_len, d_model] # 输入3个enc_inputs分别与W_q、W_k、W_v相乘得到Q、K、V # enc_self_attn_mask: [batch_size, src_len, src_len] enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, # enc_outputs: [batch_size, src_len, d_model], enc_self_attn_mask) # attn: [batch_size, n_heads, src_len, src_len] enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model] return enc_outputs, attn class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() self.src_emb = nn.Embedding(src_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) def forward(self, enc_inputs): ''' enc_inputs: [batch_size, src_len] ''' enc_outputs = self.src_emb(enc_inputs) # [batch_size, src_len, d_model] enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, src_len, d_model] enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) # [batch_size, src_len, src_len] enc_self_attns = [] for layer in self.layers: # enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len] enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask) enc_self_attns.append(enc_self_attn) return enc_outputs, enc_self_attns class DecoderLayer(nn.Module): def __init__(self): super(DecoderLayer, self).__init__() self.dec_self_attn = MultiHeadAttention() self.dec_enc_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask): # dec_inputs: [batch_size, tgt_len, d_model] # enc_outputs: [batch_size, src_len, d_model] # dec_self_attn_mask: [batch_size, tgt_len, tgt_len] # dec_enc_attn_mask: [batch_size, tgt_len, src_len] dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask) # dec_outputs: [batch_size, tgt_len, d_model] # dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len] dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask) # dec_outputs: [batch_size, tgt_len, d_model] # dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs = self.pos_ffn(dec_outputs) # dec_outputs: [batch_size, tgt_len, d_model] return dec_outputs, dec_self_attn, dec_enc_attn class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): ''' dec_inputs: [batch_size, tgt_len] enc_intpus: [batch_size, src_len] enc_outputs: [batch_size, src_len, d_model] ''' dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model] # Decoder输入序列的pad mask矩阵(这个例子中decoder是没有加pad的,实际应用中都是有pad填充的) dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # [batch_size, tgt_len, tgt_len] # Masked Self_Attention:当前时刻是看不到未来的信息的 dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs) # [batch_size, tgt_len, tgt_len] # Decoder中把两种mask矩阵相加(既屏蔽了pad的信息,也屏蔽了未来时刻的信息) dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask), 0) # [batch_size, tgt_len, tgt_len] # 这个mask主要用于encoder-decoder attention层 # get_attn_pad_mask主要是enc_inputs的pad mask矩阵(因为enc是处理K,V的,求Attention时是用v1,v2,..vm去加权的, # 要把pad对应的v_i的相关系数设为0,这样注意力就不会关注pad向量) # dec_inputs只是提供expand的size的 dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len] dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns class Transformer(nn.Module): def __init__(self): super(Transformer, self).__init__() self.Encoder = Encoder() self.Decoder = Decoder() self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) def forward(self, enc_inputs, dec_inputs): # enc_inputs: [batch_size, src_len] # dec_inputs: [batch_size, tgt_len] enc_outputs, enc_self_attns = self.Encoder(enc_inputs) # enc_outputs: [batch_size, src_len, d_model], # enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len] dec_outputs, dec_self_attns, dec_enc_attns = self.Decoder( dec_inputs, enc_inputs, enc_outputs) # dec_outpus : [batch_size, tgt_len, d_model], # dec_self_attns: [n_layers, batch_size, n_heads, tgt_len, tgt_len], # dec_enc_attn : [n_layers, batch_size, tgt_len, src_len] dec_logits = self.projection(dec_outputs) # dec_logits: [batch_size, tgt_len, tgt_vocab_size] return enc_outputs, dec_logits.view(-1, dec_logits.size(-1)) ################################################################################### model = Transformer() criterion = nn.CrossEntropyLoss(ignore_index=0) # 忽略 占位符 索引为0. optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99) for epoch in range(20): for enc_inputs, dec_inputs, dec_outputs in loader: enc_outputs ,outputs = model(enc_inputs, dec_inputs) loss = criterion(outputs, dec_outputs.view(-1)) print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss)) optimizer.zero_grad() loss.backward() optimizer.step() def test(model, enc_input, start_symbol): enc_outputs, enc_self_attns = model.Encoder(enc_input) dec_input = torch.zeros(1, tgt_len).type_as(enc_input.data) next_symbol = start_symbol for i in range(0, tgt_len): dec_input[0][i] = next_symbol dec_outputs, _, _ = model.Decoder(dec_input, enc_input, enc_outputs) projected = model.projection(dec_outputs) prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1] next_word = prob.data[i] next_symbol = next_word.item() return dec_input enc_inputs, _, _ = next(iter(loader)) predict_dec_input = test(model, enc_inputs[1].view(1, -1), start_symbol=tgt_vocab["S"]) _,predict = model(enc_inputs[1].view(1, -1), predict_dec_input) predict = predict.data.max(1, keepdim=True)[1] print([src_idx2word[int(i)] for i in enc_inputs[1]], '->',[idx2word[n.item()] for n in predict.squeeze()])
实验结果(正确设定):
实验结果(错误设定):
对应上述图片三。
示例二(Encoder_input,Decoder_input,Decoder_output设定是错误的,有热情可以将其改为正确的):
import collections import os import io import math import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchtext.vocab as Vocab import torch.utils.data as Data import numpy as np import sys from torch.utils.data import DataLoader PAD, BOS, EOS = '<pad>', '<bos>', '<eos>' os.environ['CUDA_VISIBLE_DEVICES'] = '0' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 将一个序列中所有的词记录在all_tokens中以便之后构造词典 # 然后在该序列后面添加PAD直到序列长度为max_seq_len # 然后将序列保存在all_seqs中 def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len): all_tokens.extend(seq_tokens) seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1) all_seqs.append(seq_tokens) # 使用所有的词构造词典。并将所有序列中的词变为索引后构造Tensor def build_data(all_tokens, all_seqs): vocab = Vocab.Vocab(collections.Counter(all_tokens), specials=[PAD, BOS, EOS]) indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs] return vocab, torch.tensor(indices) def read_data(max_seq_len): # in和out分别是input和output的缩写 in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], [] with io.open('fr-en-small.txt') as f: lines = f.readlines() for line in lines: in_seq, out_seq = line.rstrip().split('\t') in_seq_tokens = in_seq.split(' ') out_seq_tokens = out_seq.split(' ') # print(out_seq_tokens) if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1: # 如果加上EOS后长于max_seq_len,则忽略掉此样本 continue process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len) process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len) in_vocab, in_data = build_data(in_tokens, in_seqs) out_vocab, out_data = build_data(out_tokens, out_seqs) return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data) ############################构建Transformer :type1################################# # get_attn_subsequent_mask的实现 # ----------------------------------# def get_attn_subsequent_mask(seq): """ seq: [batch_size, tgt_len] """ attn_shape = [seq.size(0), seq.size(1), seq.size(1)] # attn_shape: [batch_size, tgt_len, tgt_len] subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成一个上三角矩阵 subsequence_mask = torch.from_numpy(subsequence_mask).byte() return subsequence_mask # [batch_size, tgt_len, tgt_len] # ----------------------------------# # ScaledDotProductAttention的实现 # ----------------------------------# class ScaledDotProductAttention(nn.Module): def __init__(self): super(ScaledDotProductAttention, self).__init__() def forward(self, Q, K, V, attn_mask): # 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k] K: [batch_size x n_heads x len_k x d_k] # V: [batch_size x n_heads x len_k x d_v] # 首先经过matmul函数得到的scores形状是: [batch_size x n_heads x len_q x len_k] scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # 然后最关键的地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对其他单词就不会起作用 scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one. attn = nn.Softmax(dim=-1)(scores) context = torch.matmul(attn, V) return context, attn # -------------------------# # MultiHeadAttention的实现 # -------------------------# class MultiHeadAttention(nn.Module): def __init__(self): super(MultiHeadAttention, self).__init__() # 输入进来的QKV是相等的,我们会使用linear做一个映射得到参数矩阵Wq, Wk,Wv self.W_Q = nn.Linear(d_model, d_k * n_heads) self.W_K = nn.Linear(d_model, d_k * n_heads) self.W_V = nn.Linear(d_model, d_v * n_heads) self.linear = nn.Linear(n_heads * d_v, d_model) self.layer_norm = nn.LayerNorm(d_model) def forward(self, Q, K, V, attn_mask): # 这个多头注意力机制分为这几个步骤,首先映射分头,然后计算atten_scores,然后计算atten_value; # 输入进来的数据形状: Q: [batch_size x len_q x d_model], K: [batch_size x len_k x d_model], # V: [batch_size x len_k x d_model] residual, batch_size = Q, Q.size(0) # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W) # 下面这个就是先映射,后分头;一定要注意的是q和k分头之后维度是一致额,所以一看这里都是dk # q_s: [batch_size x n_heads x len_q x d_k] q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # k_s: [batch_size x n_heads x len_k x d_k] k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1, 2) # v_s: [batch_size x n_heads x len_k x d_v] v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1, 2) # 输入进来的attn_mask形状是batch_size x len_q x len_k,然后经过下面这个代码得到 # 新的attn_mask: [batch_size x n_heads x len_q x len_k],就是把pad信息重复到了n个头上 attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # 然后我们运行ScaledDotProductAttention这个函数 # 得到的结果有两个:context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q x len_k] context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask) # context: [batch_size x len_q x n_heads * d_v] context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) output = self.linear(context) return self.layer_norm(output + residual), attn # output: [batch_size x len_q x d_model] # ----------------------------# # PoswiseFeedForwardNet的实现 # ----------------------------# class PoswiseFeedForwardNet(nn.Module): def __init__(self): super(PoswiseFeedForwardNet, self).__init__() self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inputs): residual = inputs # inputs : [batch_size, len_q, d_model] output = nn.ReLU()(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) return self.layer_norm(output + residual) # --------------------------# # get_attn_pad_mask的实现: # --------------------------# # 比如说,我现在的句子长度是5,在后面注意力机制的部分,我们在计算出来QK转置除以根号之后,softmax之前,我们得到的形状len_input * len*input # 代表每个单词对其余包含自己的单词的影响力。所以这里我需要有一个同等大小形状的矩阵,告诉我哪个位置是PAD部分,之后在计算softmax之前会把这里置 # 为无穷大;一定需要注意的是这里得到的矩阵形状是batch_size x len_q x len_k,我们是对k中的pad符号进行标识,并没有对k中的做标识,因为没必要。 # seq_q和seq_k不一定一致,在交互注意力,q来自解码端,k来自编码端,所以告诉模型编码这边的pad符号信息就可以,解码端的pad信息在交互注意力层是 # 没有用到的; def get_attn_pad_mask(seq_q, seq_k): batch_size, len_q = seq_q.size() batch_size, len_k = seq_k.size() # eq(zero) is PAD token pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k, one is masking return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k # ------------------------------# # Positional Encoding的代码实现 # ------------------------------# class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() # 位置编码的实现其实很简单,直接对照着公式去敲代码就可以,下面的代码只是其中的一种实现方式; # 从理解来讲,需要注意的就是偶数和奇数在公式上有一个共同部分,我们使用log函数把次方拿下来,方便计算; # pos代表的是单词在句子中的索引,这点需要注意;比如max_len是128个,那么索引就是从0,1,2,...,127 # 假设我的d_model是512,2i以步长2从0取到了512,那么i对应取值就是0,1,2...255 self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) # 这里需要注意的是pe[:, 0::2]这个用法,就是从0开始到最后面,步长为2,其实代表的就是偶数位置 pe[:, 1::2] = torch.cos(position * div_term) # 这里需要注意的是pe[:, 1::2]这个用法,就是从1开始到最后面,步长为2,其实代表的就是奇数位置 # 下面这行代码之后,我们得到的pe形状是:[max_len * 1 * d_model] pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) # 定一个缓冲区,其实简单理解为这个参数不更新就可以 def forward(self, x): """ x: [seq_len, batch_size, d_model] """ x = x + self.pe[:x.size(0), :] return self.dropout(x) # ---------------------------------------------------# # EncoderLayer:包含两个部分,多头注意力机制和前馈神经网络 # ---------------------------------------------------# class EncoderLayer(nn.Module): def __init__(self): super(EncoderLayer, self).__init__() self.enc_self_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, enc_inputs, enc_self_attn_mask): """ 下面这个就是做自注意力层,输入是enc_inputs,形状是[batch_size x seq_len_q x d_model],需要注意的是最初始的QKV矩阵是等同于这个 输入的,去看一下enc_self_attn函数. """ # enc_inputs to same Q,K,V enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_outputs: [batch_size x len_q x d_model] enc_outputs = self.pos_ffn(enc_outputs) return enc_outputs, attn # -----------------------------------------------------------------------------# # Encoder部分包含三个部分:词向量embedding,位置编码部分,自注意力层及后续的前馈神经网络 # -----------------------------------------------------------------------------# class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # 这行其实就是生成一个矩阵,大小是: src_vocab_size * d_model self.src_emb = nn.Embedding(src_vocab_size, d_model) # 位置编码,这里是固定的正余弦函数,也可以使用类似词向量的nn.Embedding获得一个可以更新学习的位置编码 self.pos_emb = PositionalEncoding(d_model, dropout) # 使用ModuleList对多个encoder进行堆叠,因为后续的encoder并没有使用词向量和位置编码,所以抽离出来; self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) def forward(self, enc_inputs): """ 这里我们的enc_inputs形状是: [batch_size x source_len] """ # 下面这行代码通过src_emb进行索引定位,enc_outputs输出形状是[batch_size, src_len, d_model] enc_outputs = self.src_emb(enc_inputs) # 这行是位置编码,把两者相加放到了pos_emb函数里面 enc_outputs = self.pos_emb(enc_outputs.transpose(0, 1)).transpose(0, 1) # get_attn_pad_mask是为了得到句子中pad的位置信息,给到模型后面,在计算自注意力和交互注意力的时候去掉pad符号的影响 enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs) enc_self_attns = [] for layer in self.layers: # 去看EncoderLayer层函数 enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask) enc_self_attns.append(enc_self_attn) return enc_outputs, enc_self_attns # --------------------# # DecoderLayer的实现 # --------------------# class DecoderLayer(nn.Module): def __init__(self): super(DecoderLayer, self).__init__() self.dec_self_attn = MultiHeadAttention() self.dec_enc_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask): dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask) dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask) dec_outputs = self.pos_ffn(dec_outputs) return dec_outputs, dec_self_attn, dec_enc_attn # ----------------# # Decoder的实现 # ----------------# class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model, dropout) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len] dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1) # [batch_size, tgt_len, d_model] # get_attn_pad_mask 自注意力层的时候的pad 部分 dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs) # get_attn_subsequent_mask 这个做的是自注意层的mask部分,就是当前单词之后看不到,使用一个上三角为1的矩阵 dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs) # 两个矩阵相加,大于0的为1,不大于0的为0,为1的在之后就会被fill到无限小 dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0) # 这个做的是交互注意力机制中的mask矩阵,enc的输入是k,我去看这个k里面哪些是pad符号,给到后面的模型;注意哦,我q肯定也是有pad符号, # 但是这里我不在意的,之前说了好多次了哈 dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns # --------------------------------------------------# # 从整体网络结构来看,分为三个部分:编码层,解码层,输出层 # --------------------------------------------------# class Transformer(nn.Module): def __init__(self): super(Transformer, self).__init__() self.encoder = Encoder() # 编码层 self.decoder = Decoder() # 解码层 # 输出层的d_model是我们解码层每个token输出的维度大小,之后会做一个tgt_vocab_size大小的softmax self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False) def forward(self, enc_inputs, dec_inputs): """ 这里有两个数据进行输入,一个是enc_inputs,形状为[batch_size, src_len],主要是作为编码端的输入,一个是dec_inputs, 形状为[batch_size, tgt_len],主要是作为解码端的输入. enc_inputs作为输入,形状为[batch_size, src_len],输出由自己的函数内部指定,想要什么指定输出什么,可以是全部tokens的输出, 可以是特定每一层的输出,也可以是中间某些参数的输出; """ # enc_outputs就是编码端的输出,enc_self_attns这里没记错的话是QK转置相乘经softmax之后的矩阵值,代表 # 的是每个单词和其他单词的相关性,即相关性矩阵; enc_outputs, enc_self_attns = self.encoder(enc_inputs) # dec_outputs是decoder的主要输出,用于后续的linear映射; dec_self_attns类比于enc_self_attns, # 是查看每个单词对decoder中输入的其余单词的相关性;dec_enc_attns是decoder中每个单词对encoder中每 # 个单词的相关性; dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs) # print(dec_outputs,dec_outputs.shape) # dec_outputs做映射到词表大小 # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size] dec_logits = self.projection(dec_outputs) # return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns # dec_output = self.softmax(dec_outputs).argmax(dim=-1).to(torch.float32) return enc_outputs, dec_logits.view(-1, dec_logits.size(-1)) ########################################################################################## def translate(model, input_seq, seq_len): in_tokens = input_seq.split(' ') in_tokens += [EOS] + [PAD] * (seq_len - len(in_tokens) - 1) # batch=1 enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) print("input sentence:",in_tokens) batch_sizes = 1 out_tokens = [BOS] # out_tokens += [BOS] + [PAD] * (max_seq_len - len(out_tokens) - 1) # print("dec_inputs:", out_tokens) dec_inputs = torch.tensor([[out_vocab.stoi[tk] for tk in out_tokens]]) output_tokens = [] for _ in range(seq_len): enc_outputs, dec_output = model(enc_input, dec_inputs) # print(dec_output.shape) outputs = dec_output.view(batch_sizes, -1, tgt_vocab_size) dec_outputs = F.softmax(outputs, dim=-1).argmax(dim=-1) # print(dec_outputs.shape) pred = torch.squeeze(dec_outputs, 0) # print(pred,pred.shape) pred_words = [out_vocab.itos[int(tk)] for tk in pred] # print("dec_outputs:", pred_words) pred_word = out_vocab.itos[int(pred)] # print("pre_add_word:",pred_word) # 当任一时间步搜索出现EOS时,输出序列即完成 if EOS == pred_word: break if PAD == pred_word: continue else: output_tokens.append(pred_word) out_token = [BOS] + output_tokens dec_inputs = torch.tensor([[out_vocab.stoi[tk] for tk in out_tokens]]) # print("dec_inputs:", out_token) # dec_inputs = torch.unsqueeze(pred,0) # print("output_words:", output_tokens) # out_tokens[i] = # out_tokens[i + 1:] = [PAD] return output_tokens def train(model, dataset, lr, batch_size, num_epochs): data_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=False) criterion = nn.CrossEntropyLoss(ignore_index=0) optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.99) for epoch in range(num_epochs): losses = 0 for enc_inputs, dec_inputs in data_loader: target_batch = dec_inputs enc_outputs, outputs = model(enc_inputs, dec_inputs) # print(outputs.shape) loss = criterion(outputs, target_batch.view(-1)) # 训练集、测试集和标签的设定对模型效果影响很大 optimizer.zero_grad() loss.backward() optimizer.step() losses = losses + loss.item() if (epoch + 1) % 5 == 0: print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(losses / (data_loader.__len__()))) if __name__ == '__main__': # 模型参数 max_seq_len = 7 batch_size = 2 d_model = 512 # 每个字符转换为Embedding的时候的大小 d_ff = 2048 # 前馈神经网络中Linear层映射到多少维度 d_k = d_v = 64 # dimension of K(=Q), V n_layers = 3 # 2个encoder/decoder n_heads = 8 # 多头注意力机制的时候把我的头分为几个 lr = 0.001 num_epochs = 20 dropout = 0.5 # src_len = 5 # 输入长度 # tgt_len = 5 # 解码端输入长度 # ------------------------------------------------------------------------------# in_vocab, out_vocab, dataset = read_data(max_seq_len) # print("in_vocab:", in_vocab.stoi["ils"], in_vocab.stoi) # print("# ----------------------------------#") # print("out_vocab:",out_vocab.stoi) # print(dataset) src_vocab_size = in_vocab.__len__() tgt_vocab_size = out_vocab.__len__() model = Transformer() train(model, dataset, lr, batch_size, num_epochs) # input_seq = 'ils regardent .' # 评价 def bleu(pred_tokens, label_tokens, k): len_pred, len_label = len(pred_tokens), len(label_tokens) if len_label != 0: score = math.exp(min(0, 1 - len_label / len_pred)) for n in range(1, k + 1): num_matches, label_subs = 0, collections.defaultdict(int) for i in range(len_label - n + 1): label_subs[''.join(label_tokens[i: i + n])] += 1 for i in range(len_pred - n + 1): if label_subs[''.join(pred_tokens[i: i + n])] > 0: num_matches += 1 label_subs[''.join(pred_tokens[i: i + n])] -= 1 if (len_pred - n + 1) != 0: score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n)) else: return "output error!" else: return "output error!" return score def score(input_seq, label_seq, k): pred_tokens = translate(model, input_seq, result_seq_len) print("pred_sen:",pred_tokens) # pred_tokens = [out_vocab.stoi[tk] for tk in pred_tokens] label_tokens = label_seq.split(' ') print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k), ' '.join(pred_tokens))) result_seq_len = 4 score('ils regardent .', 'they are watching .', k=2) score('ils se japonaise .', 'they are japanese .', k=2)
实验数据集:fr-en-small.txt
elle est vieille . she is old . elle est tranquille . she is quiet . elle a tort . she is wrong . elle est canadienne . she is canadian . elle est japonaise . she is japanese . ils sont russes . they are russian . ils se disputent . they are arguing . ils regardent . they are watching . ils sont acteurs . they are actors . elles sont crevees . they are exhausted . il est mon genre ! he is my type ! il a des ennuis . he is in trouble . c est mon frere . he is my brother . c est mon oncle . he is my uncle . il a environ mon age . he is about my age . elles sont toutes deux bonnes . they are both good . elle est bonne nageuse . she is a good swimmer . c est une personne adorable . he is a lovable person . il fait du velo . he is riding a bicycle . ils sont de grands amis . they are great friends .
实验结果:
测试时一个一个输入示例结果(输入和标签设置未修改):
其他有关于Transformer:
https://www.zhihu.com/question/337886108/answer/2364160309
https://zhuanlan.zhihu.com/p/82312421
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。