当前位置:   article > 正文

数据结构的六大排序算法详解_排序前:6 8 7 9 0 1 3 2 4 5 第1次划分: 5 4 2 3 0 1 6 9 7 8

排序前:6 8 7 9 0 1 3 2 4 5 第1次划分: 5 4 2 3 0 1 6 9 7 8 第2次划分: 1 4 2 3

在这里插入图片描述


一、简单排序

在我们的程序中,排序是非常常见的一种需求,提供一些数据元素,把这些数据元素按照一定的规则进行排序。比如查询一些订单,按照订单的日期进行排序;再比如查询一些商品,按照商品的价格进行排序等等。所以,接下来我们要学习一些常见的排序算法。

在java的开发工具包jdk中,已经给我们提供了很多数据结构与算法的实现,比如List,Set,Map,Math等等,都是以API的方式提供,这种方式的好处在于一次编写,多处使用。我们借鉴jdk的方式,也把算法封装到某个类中,那如果是这样,在我们写java代码之前,就需要先进行API的设计,设计好之后,再对这些API进行实现。

就比如我们先设计一套API如下:

image-20221109154429978

然后再使用java代码去实现它。

1、Comparable接口介绍

由于我们这里要讲排序,所以肯定会在元素之间进行比较,而Java提供了一个接口Comparable就是用来定义排序规则的,在这里我们以案例的形式对Comparable接口做一个简单的回顾。

需求:

  1. 定义一个学生类Student,具有年龄age和姓名username两个属性,并通过Comparable接口提供比较规则;
  2. 定义测试类Test,在测试类Test中定义测试方法Comparable getMax(Comparable c1,Comparable c2)完成测试
//学生类
public class Student implements Comparable<Student>{
    private String username;
    private int age;
    public String getUsername() {
        return username;
    }
    public void setUsername(String username) {
        this.username = username;
    }
    public int getAge() {
        return age;
    }
    public void setAge(int age) {
        this.age = age;
    }
    @Override
    public String toString() {
        return "Student{" +
            "username='" + username + '\'' +
            ", age=" + age +
            '}';
    }
    //定义比较规则
    @Override
    public int compareTo(Student o) {
        return this.getAge()-o.getAge();
    }
}
//测试类
public class Test {
    public static void main(String[] args) {
        Student stu1 = new Student();
        stu1.setUsername("zhangsan");
        stu1.setAge(17);
        Student stu2 = new Student();
        stu2.setUsername("lisi");
        stu2.setAge(19);
        Comparable max = getMax(stu1, stu2);
        System.out.println(max);
    }
    //测试方法,获取两个元素中的较大值
    public static Comparable getMax(Comparable c1,Comparable c2){
        int cmp = c1.compareTo(c2);
        if (cmp>=0){
            return c1;
        }else{
            return c2;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

2、冒泡排序

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。

需求:

排序前:{4,5,6,3,2,1}

排序后:{1,2,3,4,5,6}

排序原理:

  1. 比较相邻的元素。如果前一个元素比后一个元素大,就交换这两个元素的位置。

  2. 对每一对相邻元素做同样的工作,从开始第一对元素到结尾的最后一对元素。最终最后位置的元素就是最大值。

image-20221109173506296

冒泡排序API设计:

image-20221109173617387

冒泡排序的代码实现:

//排序代码
public class Bubble {
    
//对数组a中的元素进行排序

    public static void sort(Comparable[] a){
        for(int i=a.length-1;i>0;i--){
            for (int j = 0; j <i; j++) {
                if (greater(a[j],a[j+1])){
                    exch(a,j,j+1);
                }
            }
        }
    }
    
//比较v元素是否大于w元素

    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    
//数组元素i和j交换位置

    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) {
        Integer[] a = {4, 5, 6, 3, 2, 1};
        Bubble.sort(a);
        System.out.println(Arrays.toString(a));
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

冒泡排序的时间复杂度为 O(N^2)

3、选择排序

需求:

排序前:{4,6,8,7,9,2,10,1}

排序后:{1,2,4,5,7,8,9,10}

排序原理:

  1. 每一次遍历的过程中,都假定第一个索引处的元素是最小值,和其他索引处的值依次进行比较,如果当前索引处的值大于其他某个索引处的值,则假定其他某个索引出的值为最小值,最后可以找到最小值所在的索引

  2. 交换第一个索引处和最小值所在的索引处的值

image-20221109191758118

选择排序API设计:

image-20221109192014319

选择排序的代码实现:

public class Selection {
    /*
对数组a中的元素进行排序
*/
    public static void sort(Comparable[] a){
        for (int i=0;i<=a.length-2;i++){
            //假定本次遍历,最小值所在的索引是i
            int minIndex=i;
            for (int j=i+1;j<a.length;j++){
                if (greater(a[minIndex],a[j])){
                    //跟换最小值所在的索引
                    minIndex=j;
                }
            }
            //交换i索引处和minIndex索引处的值
            exch(a,i,minIndex);
        }
    }
    /*
比较v元素是否大于w元素
*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*
数组元素i和j交换位置
*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) {
        Integer[] a = {4,6,8,7,9,2,10,1};
        Selection.sort(a);
        System.out.println(Arrays.toString(a));
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

时间复杂度为 O(N^2)

4、插入排序

需求:

排序前:{4,3,2,10,12,1,5,6}

排序后:{1,2,3,4,5,6,10,12}

排序原理:

  1. 把所有的元素分为两组,已经排序的和未排序的;

  2. 找到未排序的组中的第一个元素,向已经排序的组中进行插入;

  3. 倒叙遍历已经排序的元素,依次和待插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置,其他的元素向后移动一位;

image-20221109192418406

插入排序代码实现:

public class Insertion {
    /*
对数组a中的元素进行排序
*/
    public static void sort(Comparable[] a){
        for (int i=1;i<a.length;i++){
            //当前元素为a[i],依次和i前面的元素比较,找到一个小于等于a[i]的元素
            for (int j=i;j>0;j--){
                if (greater(a[j-1],a[j])){
                    //交换元素
                    exch(a,j-1,j);
                }else {
                    //找到了该元素,结束
                    break;
                }
            }
        }
    }
    /*
比较v元素是否大于w元素
*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*
数组元素i和j交换位置
*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

时间复杂度为 O(N^2)

二、高级排序

1、希尔排序

希尔排序是插入排序的一种,又称“缩小增量排序”,是插入排序算法的一种更高效的改进版本。

前面学习插入排序的时候,我们会发现一个很不友好的事儿,如果已排序的分组元素为{2,5,7,9,10},未排序的分组元素为{1,8},那么下一个待插入元素为1,我们需要拿着1从后往前,依次和10,9,7,5,2进行交换位置,才能完成真正的插入,每次交换只能和相邻的元素交换位置。那如果我们要提高效率,直观的想法就是一次交换,能把1放到更前面的位置,比如一次交换就能把1插到2和5之间,这样一次交换1就向前走了5个位置,可以减少交换的次数,这样的需求如何实现呢?接下来我们来看看希尔排序的原理。

需求:

排序前:{9,1,2,5,7,4,8,6,3,5}

排序后:{1,2,3,4,5,5,6,7,8,9}

排序原理:

  1. 选定一个增长量h,按照增长量h作为数据分组的依据,对数据进行分组;

  2. 对分好组的每一组数据完成插入排序;

  3. 减小增长量,最小减为1,重复第二步操作。

image-20221109195344071

增长量h的确定:增长量h的值每一固定的规则,我们这里采用以下规则:

int h=1
    while(h<5){
        h=2h+1//3,7
    }
//循环结束后我们就可以确定h的最大值;
h的减小规则为:
    h=h/2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

希尔排序的代码实现:

//排序代码
public class Shell {
    /*
对数组a中的元素进行排序
*/
    public static void sort(Comparable[] a){
        int N = a.length;
        //确定增长量h的最大值
        int h=1;
        while(h<N/2){
            h=h*2+1;
        }
        //当增长量h小于1,排序结束
        while(h>=1){
            //找到待插入的元素
            for (int i=h;i<N;i++){
                //a[i]就是待插入的元素
                //把a[i]插入到a[i-h],a[i-2h],a[i-3h]...序列中
                for (int j=i;j>=h;j-=h){
                    //a[j]就是待插入元素,依次和a[j-h],a[j-2h],a[j-3h]进行比较,如果a[j]小,那么
                    交换位置,如果不小于,a[j]大,则插入完成。
                        if (greater(a[j-h],a[j])){
                            exch(a,j,j-h);
                        }else{
                            break;
                        }
                }
            }
            h/=2;
        }
    }
    /*
比较v元素是否大于w元素
*/
    private static boolean greater(Comparable v,Comparable w){
        return v.compareTo(w)>0;
    }
    /*
数组元素i和j交换位置
*/
    private static void exch(Comparable[] a,int i,int j){
        Comparable t = a[i];
        a[i]=a[j];
        a[j]=t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) {
        Integer[] a = {9,1,2,5,7,4,8,6,3,5} ;
        Shell.sort(a);
        System.out.println(Arrays.toString(a));
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

注:处理大批量数据时,希尔排序的性能高于插入排序

2、归并排序

关于递归:定义方法时,在方法内部调用方法本身,称之为递归。它通常把一个大型复杂的问题,层层转换为一个与原问题相似的,规模较小的问题来求解。递归策略只需要少量的程序就可以描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。

public void show(){
    System.out.println("aaaa");
    show();
}
  • 1
  • 2
  • 3
  • 4

在递归中,不能无限制的调用自己,必须要有边界条件,能够让递归结束,因为每一次递归调用都会在栈内存开辟新的空间,重新执行方法,如果递归的层级太深,很容易造成栈内存溢出。

image-20221109230628135

需求:

请定义一个方法,使用递归完成求N的阶乘;

分析:
1!: 1
2!: 2*1=2*1!
3!: 3*2*1=3*2!
4!: 4*3*2*1=4*3!
...
n!: n*(n-1)*(n-2)...*2*1=n*(n-1)!
所以,假设有一个方法factorial(n)用来求n的阶乘,那么n的阶乘还可以表示为n*factorial(n-1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

代码实现:

public class Test {
    public static void main(String[] args) throws Exception {
        int result = factorial(5);
        System.out.println(result);
    }
    public static int factorial(int n){
        if (n==1){
            return 1;
        }
        return n*factorial(n-1);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

需求:

排序前:{8,4,5,7,1,3,6,2}

排序后:{1,2,3,4,5,6,7,8}

排序原理:

  1. 尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止。

  2. 将相邻的两个子组进行合并成一个有序的大组;

  3. 不断的重复步骤2,直到最终只有一个组为止。

image-20221110001847958

归并原理:

image-20221110002153799

image-20221110002323876

image-20221110002500330

image-20221110002545660

image-20221110002605827

归并排序代码实现:

//排序代码
public class Merge {
    private static Comparable[] assist;//归并所需要的辅助数组
    /*
对数组a中的元素进行排序
*/
    public static void sort(Comparable[] a) {
        assist = new Comparable[a.length];
        int lo = 0;
        int hi = a.length-1;
        sort(a, lo, hi);
    }
    /*
对数组a中从lo到hi的元素进行排序
*/
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi <= lo) {
            return;
        }
        int mid = lo + (hi - lo) / 2;
        //对lo到mid之间的元素进行排序;
        sort(a, lo, mid);
        //对mid+1到hi之间的元素进行排序;
        sort(a, mid+1, hi);
        //对lo到mid这组数据和mid到hi这组数据进行归并
        merge(a, lo, mid, hi);
    }
    /*
对数组中,从lo到mid为一组,从mid+1到hi为一组,对这两组数据进行归并
*/
    private static void merge(Comparable[] a, int lo, int mid, int hi) {
        //lo到mid这组数据和mid+1到hi这组数据归并到辅助数组assist对应的索引处
        int i = lo;//定义一个指针,指向assist数组中开始填充数据的索引
        int p1 = lo;//定义一个指针,指向第一组数据的第一个元素
        int p2 = mid + 1;//定义一个指针,指向第二组数据的第一个元素
        //比较左边小组和右边小组中的元素大小,哪个小,就把哪个数据填充到assist数组中
        while (p1 <= mid && p2 <= hi) {
            if (less(a[p1], a[p2])) {
                assist[i++] = a[p1++];
            } else {
                assist[i++] = a[p2++];
            }
        }
        //上面的循环结束后,如果退出循环的条件是p1<=mid,则证明左边小组中的数据已经归并完毕,如果退出循环的条件是p2<=hi,则证明右边小组的数据已经填充完毕;
            //所以需要把未填充完毕的数据继续填充到assist中,//下面两个循环,只会执行其中的一个
            while(p1<=mid){
                assist[i++]=a[p1++];
            }
        while(p2<=hi){
            assist[i++]=a[p2++];
        }
        //到现在为止,assist数组中,从lo到hi的元素是有序的,再把数据拷贝到a数组中对应的索引处
        for (int index=lo;index<=hi;index++){
            a[index]=assist[index];
        }
    }
    /*
比较v元素是否小于w元素
*/
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }
    /*
数组元素i和j交换位置
*/
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        Integer[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
        Merge.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79

归并排序的时间复杂度为O(nlogn)

注:希尔排序和归并排序在处理大批量数据时差别不是很大。

3、快速排序

快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

需求:

排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}

排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}

排序原理:

  1. 首先设定一个分界值,通过该分界值将数组分成左右两部分;

  2. 将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值;

  3. 然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。

  4. 重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。

image-20221110004034155

切分原理:

把一个数组切分成两个子数组的基本思想:

  1. 找一个基准值,用两个指针分别指向数组的头部和尾部;

  2. 先从尾部向头部开始搜索一个比基准值小的元素,搜索到即停止,并记录指针的位置;

  3. 再从头部向尾部开始搜索一个比基准值大的元素,搜索到即停止,并记录指针的位置;

  4. 交换当前左边指针位置和右边指针位置的元素;

  5. 重复2,3,4步骤,直到左边指针的值大于右边指针的值停止。

image-20221110004311623

image-20221110004412512

image-20221110004609583

快速排序代码实现:

//排序代码
public class Quick {
    public static void sort(Comparable[] a) {
        int lo = 0;
        int hi = a.length - 1;
        sort(a, lo,hi);
    }
    private static void sort(Comparable[] a, int lo, int hi) {
        if (hi<=lo){
            return;
        }
        //对a数组中,从lo到hi的元素进行切分
        int partition = partition(a, lo, hi);
        //对左边分组中的元素进行排序
        //对右边分组中的元素进行排序
        sort(a,lo,partition-1);
        sort(a,partition+1,hi);
    }
    public static int partition(Comparable[] a, int lo, int hi) {
        Comparable key=a[lo];//把最左边的元素当做基准值
        int left=lo;//定义一个左侧指针,初始指向最左边的元素
        int right=hi+1;//定义一个右侧指针,初始指向左右侧的元素下一个位置
        //进行切分
        while(true){
            //先从右往左扫描,找到一个比基准值小的元素
            while(less(key,a[--right])){//循环停止,证明找到了一个比基准值小的元素
                if (right==lo){
                    break;//已经扫描到最左边了,无需继续扫描
                }
            }
            //再从左往右扫描,找一个比基准值大的元素
            while(less(a[++left],key)){//循环停止,证明找到了一个比基准值大的元素
                if (left==hi){
                    break;//已经扫描到了最右边了,无需继续扫描
                }
            }
            if (left>=right){
                //扫描完了所有元素,结束循环
                break;
            }else{
                //交换left和right索引处的元素
                exch(a,left,right);
            }
        }
        //交换最后rigth索引处和基准值所在的索引处的值
        exch(a,lo,right);
        return right;//right就是切分的界限
    }
    /*
数组元素i和j交换位置
*/
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
    /*
比较v元素是否小于w元素
*/
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }
}
//测试代码
public class Test {
    public static void main(String[] args) throws Exception {
        Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
        Quick.sort(arr);
        System.out.println(Arrays.toString(arr));
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

时间复杂度为O(nlogn)

4、排序的稳定性

稳定性的定义:

数组arr中有若干元素,其中A元素和B元素相等,并且A元素在B元素前面,如果使用某种排序算法排序后,能够保证A元素依然在B元素的前面,可以说这个该算法是稳定的。

常见排序算法的稳定性:

  • 冒泡排序: 只有当arr[i]>arr[i+1]的时候,才会交换元素的位置,而相等的时候并不交换位置,所以冒泡排序是一种稳定排序算法。

  • 选择排序: 选择排序是给每个位置选择当前元素最小的,例如有数据{5(1),8 ,5(2), 2, 9 },第一遍选择到的最小元素为2,所以5(1)会和2进行交换位置,此时5(1)到了5(2)后面,破坏了稳定性,所以选择排序是一种不稳定的排序算法。

  • 插入排序: 比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么把要插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。

  • 希尔排序: 希尔排序是按照不同步长对元素进行插入排序 ,虽然一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。

  • 归并排序: 归并排序在归并的过程中,只有arr[i]<arr[i+1]的时候才会交换位置,如果两个元素相等则不会交换位置,所以它并不会破坏稳定性,归并排序是稳定的。

  • 快速排序: 快速排序需要一个基准值,在基准值的右侧找一个比基准值小的元素,在基准值的左侧找一个比基准值大的元素,然后交换这两个元素,此时会破坏稳定性,所以快速排序是一种不稳定的算法。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/654309
推荐阅读
相关标签
  

闽ICP备14008679号