赞
踩
我们在根目录下还有 6 个文件:
encode_faces.py :人脸的编码(128 维向量)是用这个脚本构建的。
identify_faces_image.py :识别单个图像中的人脸(基于数据集中的编码)。
identify_faces_video.py :识别来自网络摄像头的实时视频流中的人脸并输出视频。
encodings.pickle :面部识别编码通过 encode_faces.py 从您的数据集生成,然后序列化到磁盘。
创建图像数据集后(使用 search_bing_api.py ),我们将运行 encode_faces.py 来构建嵌入。 然后,我们将运行识别脚本来实际识别人脸。
=================================================================================
在识别图像和视频中的人脸之前,我们首先需要量化训练集中的人脸。 请记住,我们实际上并不是在这里训练网络——网络已经被训练为在大约 300 万张图像的数据集上创建 128 维嵌入。
当然可以从头开始训练网络,甚至可以微调现有模型的权重。一般情况。
使用预训练网络然后使用它为我们数据集中的 29张人脸中的每一张构建 128 维嵌入更容易。
然后,在分类过程中,我们可以使用一个简单的 k-NN 模型 + 投票来进行最终的人脸分类。 其他传统的机器学习模型也可以在这里使用。 要构建我们的人脸嵌入,
请新建 encode_faces.py:
from imutils import paths
import face_recognition
import argparse
import pickle
import cv2
import os
dataset_path=‘dataset’
encodings_path=‘encodings.pickle’
detection_method=‘cnn’
print(“[INFO] quantifying faces…”)
imagePaths = list(paths.list_images(dataset_path))
knownEncodings = []
knownNames = []
for (i, imagePath) in enumerate(imagePaths):
print(“[INFO] processing image {}/{}”.format(i + 1,
len(imagePaths)))
name = imagePath.split(os.path.sep)[-2]
image = cv2.imread(imagePath)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
boxes = face_recognition.face_locations(rgb, model=detection_method)
encodings = face_recognition.face_encodings(rgb, boxes)
for encoding in encodings:
knownEncodings.append(encoding)
knownNames.append(name)
导入包,定义全局变量
变量的含义:
dataset_path:数据集的路径。
encodings_path :我们的人脸编码被写入这个参数指向的文件路径。
detection_method :在我们对图像中的人脸进行编码之前,我们首先需要检测它们。 或者两种人脸检测方法包括 hog 或 cnn 。
现在我们已经定义了我们的参数,让我们获取数据集中文件的路径(以及执行两个初始化):
输入数据集目录的路径来构建其中包含的所有图像路径的列表。
在循环之前分别初始化两个列表 knownEncodings 和 knownNames 。 这两个列表将包含数据集中每个人的面部编码和相应的姓名。
这个循环将循环 19次,对应于我们在数据集中的 19张人脸图像。
遍历每个图像的路径。从 imagePath中提取人名。 然后让我们加载图像,同时将 imagePath 传递给 cv2.imread。 OpenCV 使用BGR 颜色通道,但 dlib 实际上期望 RGB。 face_recognition 模块使用 dlib ,交换颜色空间。 接下来,让我们定位人脸并计算编码:
对于循环的每次迭代,我们将检测一张脸,查找/定位了她的面孔,从而生成了面孔框列表。 我们将两个参数传递给 face_recognition.face_locations 方法:
rgb :我们的 RGB 图像。
model:cnn 或 hog(该值包含在与“detection_method”键关联的命令行参数字典中)。 CNN方法更准确但速度更慢。 HOG 速度更快,但准确度较低。
然后,将面部的边界框转换为 128 个数字的列表。这称为将面部编码为向量,而 face_recognition.face_encodings 方法会处理它。 编码和名称附加到适当的列表(knownEncodings 和 knownNames)。然后,将继续对数据集中的所有 19张图像执行此操作。
print(“[INFO] serializing encodings…”)
data = {“encodings”: knownEncodings, “names”: knownNames}
f = open(args[“encodings”], “wb”)
f.write(pickle.dumps(data))
f.close()
构造了一个带有两个键的字典—— “encodings” 和 “names” 。
将名称和编码转储到磁盘以备将来调用。运行encode_faces.py
D:\ProgramData\Anaconda3\python.exe D:/cv/myface/encode_faces.py
[INFO] quantifying faces…
[INFO] processing image 1/19
[INFO] processing image 2/19
[INFO] processing image 3/19
[INFO] processing image 4/19
[INFO] processing image 5/19
[INFO] processing image 6/19
[INFO] processing image 7/19
[INFO] processing image 8/19
[INFO] processing image 9/19
[INFO] processing image 10/19
[INFO] processing image 11/19
[INFO] processing image 12/19
[INFO] processing image 13/19
[INFO] processing image 14/19
[INFO] processing image 15/19
[INFO] processing image 16/19
[INFO] processing image 17/19
[INFO] processing image 18/19
[INFO] processing image 19/19
[INFO] serializing encodings…
Process finished with exit code 0
正如输出中看到的,我们现在有一个名为 encodings.pickle 的文件——该文件包含我们数据集中每个人脸的 128 维人脸嵌入。
===================================================================
现在我们已经为数据集中的每个图像创建了 128 维人脸嵌入,现在我们可以使用 OpenCV、Python 和深度学习来识别图像中的人脸。 打开recognize_faces_image.py 并插入以下代码:
import face_recognition
import pickle
import cv2
encodings_path=‘encodings.pickle’
image_path=‘11.jpg’
detection_method=‘cnn’
print(“[INFO] loading encodings…”)
data = pickle.loads(open(encodings_path, “rb”).read())
image = cv2.imread(image_path)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(“[INFO] recognizing faces…”)
boxes = face_recognition.face_locations(rgb,model=detection_method)
encodings = face_recognition.face_encodings(rgb, boxes)
names = []
for encoding in encodings:
matches = face_recognition.compare_faces(data[“encodings”],encoding)
name = “Unknown”
if True in matches:
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
for i in matchedIdxs:
name = data[“names”][i]
counts[name] = counts.get(name, 0) + 1
name = max(counts, key=counts.get)
names.append(name)
for ((top, right, bottom, left), name) in zip(boxes, names):
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
y = top - 15 if top - 15 > 15 else top + 15
cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 255, 0), 2)
解析三个参数:
encodings_path:包含我们的面部编码的pickle文件的路径。
image_path:这是正在进行面部识别的图像。
detection-method :你现在应该很熟悉这个了——根据你系统的能力,我们要么使用 hog 方法,要么使用 cnn 方法。 为了速度,选择 hog ,为了准确,选择 cnn 。
然后,让我们加载预先计算的编码 + 人脸名称,然后为输入图像构建 128 维人脸编码。
加载编码和人脸名称。
加载输入图像并将其转换为 rgb 颜色通道排序。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
n 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-EyxUe9P1-1712471499529)]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。