赞
踩
1、k-means算法简介
k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。
k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-means算法又称为k-均值算法。k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。
2、k-means算法详解
k-means算法以距离作为数据对象间相似性度量的标准,通常采用欧氏距离来计算数据对象间的距离。下面给出欧式距离的计算公式:
3、k-means算法优缺点分析
- 优点:
算法简单易实现;
- 缺点:
需要用户事先指定类簇个数
聚类结果对初始类簇中心的选取较为敏感;
容易陷入局部最优;
只能发现球型类簇;
4、k-means算法改进方法
初始类簇中心的选取,可以通过k-means++算法进行改进。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。