赞
踩
我采用的是Anaconda+Pycharm的配置,python=3.8。
Anaconda安装自己百度
创建conda环境:
conda create --name 改成你的环境名称 python=3.8
https://github.com/ultralytics/yolov5
github:
https://github.com/ultralytics/yolov5/releases/tag/v6.0
下载yolov5s.pt文件
权重文件下载放到Yolov5根目录
conda创建环境
conda create -n goods python=3.8
使用conda进入你创建的环境
activate 你的环境
linux添加环境变量
export PATH=$PATH:/root/anaconda3/bin
linux使用,如果你使用的是较早版本的Conda(如Conda 4.6之前的版本)
source activate 你的环境
进入YOLO5根目录,安装需要的库
pip install -r requirements.txt
运行detect.py文件,若没有问题在runs/detect/exp目录会得到以下图片
1、修改train.py
修改goods.yaml文件
goods.yaml文件参数
path训练集参数在项目中的绝对路径
train训练集文件地址
val测试集文件地址
names你创建的标签列表(如何创建标签查看第六步)
常用的制作标签软件labelme、labelImg
我使用的是labelImg
安装labelImg
pip install labelImg
启动labelImg
labelImg
然后打开图片框选要识别的物体 - 输入标签保存即可
训练的图片放到datasets/goods/images/train里面
labelImg保存的txt文件放到datasets/goods/labels/train里面
注意:需要修改这个为YOLO
注意:训练图片名称和标签名称必须是一样的
如果是json文件需要转换成txt文件
- import json
- import os
-
- name2id = {'nonFuShanQuan':0}#标签名称
-
-
- def convert(img_size, box):
- dw = 1. / (img_size[0])
- dh = 1. / (img_size[1])
- x = (box[0] + box[2]) / 2.0 - 1
- y = (box[1] + box[3]) / 2.0 - 1
- w = box[2] - box[0]
- h = box[3] - box[1]
- x = x * dw
- w = w * dw
- y = y * dh
- h = h * dh
- return (x, y, w, h)
-
-
- def decode_json(json_floder_path, json_name):
- txt_name = 'D:\\daima\\pythonDome\\goods\\' + json_name[0:-5] + '.txt'
- #存放txt的绝对路径
- txt_file = open(txt_name, 'w')
-
- json_path = os.path.join(json_floder_path, json_name)
- data = json.load(open(json_path, 'r', encoding='gb2312',errors='ignore'))
-
- img_w = data['imageWidth']
- img_h = data['imageHeight']
-
- for i in data['shapes']:
-
- label_name = i['label']
- if (i['shape_type'] == 'rectangle'):
- x1 = int(i['points'][0][0])
- y1 = int(i['points'][0][1])
- x2 = int(i['points'][1][0])
- y2 = int(i['points'][1][1])
-
- bb = (x1, y1, x2, y2)
- bbox = convert((img_w, img_h), bb)
- txt_file.write(str(name2id[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')
-
-
- if __name__ == "__main__":
-
- json_floder_path = 'D:\\daima\\pythonDome\\goods\\'
- #存放json的文件夹的绝对路径
- json_names = os.listdir(json_floder_path)
- for json_name in json_names:
- decode_json(json_floder_path, json_name)
如果是xml文件需要转成txt文件
- import xml.etree.ElementTree as ET
- import pickle
- import os
- from os import listdir, getcwd
- from os.path import join
-
-
- def convert(size, box):
- # size=(width, height) b=(xmin, xmax, ymin, ymax)
- # x_center = (xmax+xmin)/2 y_center = (ymax+ymin)/2
- # x = x_center / width y = y_center / height
- # w = (xmax-xmin) / width h = (ymax-ymin) / height
-
- x_center = (box[0] + box[1]) / 2.0
- y_center = (box[2] + box[3]) / 2.0
- x = x_center / size[0]
- y = y_center / size[1]
-
- w = (box[1] - box[0]) / size[0]
- h = (box[3] - box[2]) / size[1]
-
- # print(x, y, w, h)
- return (x, y, w, h)
-
-
- def convert_annotation(xml_files_path, save_txt_files_path, classes):
- xml_files = os.listdir(xml_files_path)
- # print(xml_files)
- for xml_name in xml_files:
- # print(xml_name)
- xml_file = os.path.join(xml_files_path, xml_name)
- out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')
- out_txt_f = open(out_txt_path, 'w')
- tree = ET.parse(xml_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- # if cls not in classes or int(difficult) == 1:
- # continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
- float(xmlbox.find('ymax').text))
- # b=(xmin, xmax, ymin, ymax)
- # print(w, h, b)
- bb = convert((w, h), b)
- out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
-
- if __name__ == "__main__":
- # 把forklift_pallet的voc的xml标签文件转化为yolo的txt标签文件
- # 1、需要转化的类别
- classes = ['nonFuShanQuan']
- # 2、voc格式的xml标签文件路径
- xml_files1 = r'D:\Technology\Python_File\yolov5\M3FD\Annotation_xml'
- # xml_files1 = r'C:/Users/GuoQiang/Desktop/数据集/标签1'
-
- # 3、转化为yolo格式的txt标签文件存储路径
- save_txt_files1 = r'D:\Technology\Python_File\yolov5\M3FD\Annotation_txt'
-
- convert_annotation(xml_files1, save_txt_files1, classes)
报错:COMET_GIT_DIRECTORY if your Git Repository is elsewhere
解决:卸载掉comet_ml
pip uninstall comet_ml
报错(好像解决上面的就行了):UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 234: illegal multibyte sequence
训练成功
搜索parse_opt方法
--weights:训练好的权重文件(runs/train/exp/weights中),best.pt为最好的一次,last.pt为最后一次
--source:要检测的文件,可以是图片文件夹、本地图片视频、线上图片视频、摄像头。填0时为打开电脑默认摄像头
--data:数据集参数文件
--imgsz:图片大小
--conf-thres:置信度,当检测出来的置信度大于该数值时才能显示出被检测到
主要修改这三个
结果在runs/detect/exp中
部署到安卓系统
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。