当前位置:   article > 正文

如何解决“RuntimeError: CUDA Out of memory”问题

runtimeerror: cuda error: out of memory

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Nitin Kishore

编译:ronghuaiyang

导读

一些可以尝试的解决“RuntimeError: CUDA Out of memory”的方案。

af08bd700e5fe10c9f57e9a7579e5b70.png

当遇到这个问题时,你可以尝试一下这些建议,按代码更改的顺序递增:

  1. 减少“batch_size”

  2. 降低精度

  3. 按照错误说的做

  4. 清除缓存

  5. 修改模型/训练

在这些选项中,如果你使用的是预训练模型,则最容易和最有可能解决问题的选项是第一个。

修改batchsize

如果你是在运行现成的代码或模型,则最好的做法是减小batchsize。减半,然后继续减半,直到没有错误为止。

9c0a2a5a100f0722786373c31ea0b5a6.jpeg

但是,如果在此过程中,你发现自己将batchsize大小设置为 1 并且仍然无济于事,那么就还有其他问题,如果可以修复它,那么模型训练可以在更大的batchsize下工作。

降低精度

如果你用的是 Pytorch-Lightning,你也可以尝试将精度更改为“float16”。这可能会带来诸如预期的 Double 和 Float 张量之间的不匹配等问题,但它可以节省很多内存的,并且在性能上有一个非常轻微的权衡,使其成为一个可行的选择。

这第三种选择 ——

按照错误信息去做

可以使用以下命令完成此操作。如果你使用的是 Windows 计算机,则可以使用 set 而不是 export

export PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6,max_split_size_mb:128

如果你在Jupyter或Colab笔记本上,在发现RuntimeError: CUDA out of memory后。你需要重新启动kernel。

使用多 GPU 系统时,我建议使用CUDA_VISIBLE_DEVICES 环境变量来选择要使用的 GPU。

  1. $ export CUDA_VISIBLE_DEVICES=0  (OR)
  2. $ export CUDA_VISIBLE_DEVICES=1  (OR) 
  3. $ export CUDA_VISIBLE_DEVICES=2,4,6  (OR)# This will make the cuda visible with 0-indexing so you get cuda:0 even if you run the second one.

或者,在python代码中设置:

  1. import os
  2. os.environ['CUDA_VISIBLE_DEVICES']='2, 3'

一些stack overflow的帖子会让你尝试将这些行添加到你的代码中 ——

释放Cache

要弄清楚你的模型在 cuda 上占用了多少内存,你可以尝试:

  1. import gc
  2. def report_gpu():
  3.    print(torch.cuda.list_gpu_processes())
  4.    gc.collect()
  5.    torch.cuda.empty_cache()

如果你调用python的垃圾收集,并调用pytorch的清空缓存,这基本上应该让你的GPU恢复到一个干净的状态,不使用超过它需要的内存,当你开始训练下一个模型时,不必重新启动kernel。

  1. import gc
  2. gc.collect()
  3. torch.cuda.empty_cache()

虽然torch.cuda.empty_cache()gc.collect() 可以释放CUDA内存,但显然不能释放的内存返回到Python中。因此,不要把希望寄托在这些脚本上。对于JupyterLab或Colab来说,这种方式是有效的。下面是如何使用这些代码的例子:

08e436d1a0b8ac75f61f2effb431eebe.png

我们马上去看一下 .detach()和.cpu():

ed77a027cfc51cea3a0dbb502361dc14.png

这通常仅适用于notebooks 和 ipython

让我们看看这些之外的替代方法

使用koila python包

以下是如何使用koila的例子

  1. pip install koila
  2. # Wrap the input tensor and label tensor.
  3. # If a batch argument is provided, that dimension of the tensor would be treated as the batch.
  4. # In this case, the first dimension (dim=0) is used as batch's dimension.
  5. (input, label) = lazy(input, label, batch=0)

如果这些都没有帮助,解决问题的唯一方法是找出:

是什么在使用内存?

16cede3a25de42d30beb24468b639ef7.jpeg

与流行的看法相反,你不需要更大的GPU来训练更大的模型,你可以简单地使用梯度累积。我们稍后会讨论这个问题。我们来剖析一下错误消息,因为这通常是一个很好的提示。

0e26b487037e8b58b7aa5baf9b7517c6.png

这条信息告诉你总共有15.78G的GPU内存。因此,你可以检查一下的数据和模型有多大,因为你需要将它们移动到 GPU中。如果它超过了总容量,则无法在该计算机上运行,你需要将数据分块,并在 CPU 和 GPU 之间持续移动。

5140cac90aa5560745cb3a28bfbe781b.jpeg

减小图像尺寸也有帮助,如果它说你不能使用 x MiB,因为你只有一点内存可用,找出其他进程也在使用 GPU 并释放该空间。通过运行以下命令查找 python 进程的 PID:

nvidia-smi

杀掉

sudo kill -9 pid

修改模型/训练循环

现在我们进入了最后阶段。一切都试过了,没有任何东西在使用 GPU 内存,你编写的代码很可能将很多东西都推送到 GPU 上了。你想要它用于大型矩阵乘法,但对于像指标计算日志记录这样简单的东西,你可以在CPU上做这些。所以把这些都从GPU上去掉。

f19afe99dac0709c2416a452cda91fe1.png

Loss, Preds, Targets

不要保存整个tensor,当你在epoch结束需要汇总损失的时候,使用loss.item()

使用preds.detach().cpu()从 GPU 中删除预测和目标。这些都是很重的东西。如果你只保留它们用于日志记录,则无需将它们保留在内存中。

在这里要小心。如果你发现你的损失在各个epoch中是恒定的,那可能是因为你分离了计算图的一部分,而反向传播没有办法返回更新值。因此,请弄清楚在代码中的哪个点可以执行上述 2 个步骤。

我们再说一下另外一个技巧:

梯度累积

减小batchsize大小是避免内存问题的一种方法,但是,batchsize越小,batch与batch之间的波动性就越大。因此,训练的动态会有所不同。你不希望继续为不同batchsize大小的结构查找一组不同的超参数。

你可以使用另一个称为accum的参数来“累积梯度”,方法是定义累积的梯度batch数。由于我们在accum批次上添加这些梯度,因此我们将batch_size除以相同的数字。

batch_size//accum

累积可以通过使用回调GradientAccumulation来完成

  1. batch_size = 64
  2. accum=2
  3. # Data loader , change the batchsize parmeter to  bs = 64//accum
  4. cbs = GradientAccumulation(64if accum else []

我们可以做的是找到一种方法来运行 32 条数据,但让它一次表现得像 64 条数据。在一般的训练循环中,在执行loss.backward() 之前,你需要将梯度归零,如果不将梯度归零,梯度将进行累积。

因此,如果你在不将梯度归零的情况下进行 2 个半批次的训练,它们的梯度回累积,最终得到以目标有效批次大小相同的梯度。在训练循环中,我们需要使用计数器根据小batchsize大小进行更新,一旦它达到预设的目标,那就是我们将梯度归零时。在那之前,他们只是通过loss.backward()而不断积累。

4f892c23ecddce2ffa5ca1f5d9442504.png

—END—

英文原文:https://medium.com/@snk.nitin/how-to-solve-cuda-out-of-memory-error-850bb247cfb2

44d47c0d75ed735847da9571d0cb5d4b.jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个在看吧

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/88965
推荐阅读
相关标签
  

闽ICP备14008679号