当前位置:   article > 正文

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化

动手学深度学习(Pytorch版)代码实践 -卷积神经网络-28批量规范化

28批量规范化

"""可持续加速深层网络的收敛速度"""
import torch
from torch import nn
import liliPytorch as lp
import matplotlib.pyplot as plt

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    """实现一个具有张量的批量规范化层。"""
    # 如果启用了梯度计算,torch.is_grad_enabled() 返回 True;否则返回 False。
    if not torch.is_grad_enabled():
        # torch.no_grad() 是一个上下文管理器,用于临时禁用梯度计算
        # torch.enable_grad() 是一个上下文管理器,用于在禁用梯度计算的上下文中重新启用梯度计算。
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0) # 计算张量 X 沿着第 0 维的平均值
            # 维度 0 代表样本数量,即沿着每个特征计算所有样本的平均值。
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
            # 这里我们需要保持X的形状以便后面可以做广播运算
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # 训练模式下,用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)

        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    # gamma 和 beta 的更新是通过反向传播和优化器自动完成的
    Y = gamma * X_hat + beta # 缩放和移位
    return Y, moving_mean.data, moving_var.data

class BatchNorm(nn.Module):
    # num_features:完全连接层的输出数量或卷积层的输出通道数。
    # num_dims:2表示完全连接层,4表示卷积层
    def __init__(self, num_features, num_dims):
        super().__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        
        # 非模型参数的变量初始化为0和1
        # 经过归一化处理后的数据均值接近于零。因此,将滑动均值初始化为0,是对数据初始均值的一种合理假设。
        self.moving_mean = torch.zeros(shape)
        # 方差表示数据的离散程度。将滑动方差初始化为1,意味着假设数据的初始方差为1,
        # 即数据分布接近标准正态分布。这样初始化可以避免初始阶段的数值不稳定。
        self.moving_var = torch.ones(shape)

    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var
        # 复制到X所在GPU上                              
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        
         # 保存更新过的moving_mean和moving_var
        Y, self.moving_mean, self.moving_var = batch_norm(
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

#使用批量规范化层的 LeNet
net = nn.Sequential(
    nn.Conv2d(1, 6,  kernel_size=5, padding=2), # 卷积层1:输入通道数1,输出通道数6,卷积核大小5x5,填充2
    BatchNorm(num_features=6, num_dims=4),
    nn.ReLU(), # 激活函数
    nn.AvgPool2d(kernel_size=2, stride=2), # 平均池化层1:池化窗口大小2x2,步幅2

    nn.Conv2d(6, 16, kernel_size=5), # 卷积层2:输入通道数6,输出通道数16,卷积核大小5x5
    BatchNorm(num_features=16, num_dims=4),
    nn.ReLU(), 
    nn.AvgPool2d(kernel_size=2, stride=2), # 平均池化层2:池化窗口大小2x2,步幅2

    nn.Flatten(), # 展平层:将多维输入展平为1维
    nn.Linear(16 * 5 * 5, 120), # 全连接层1:输入节点数16*5*5,输出节点数120
    BatchNorm(num_features=120, num_dims=2),
    nn.ReLU(),
    nn.Linear(120, 84), # 全连接层2:输入节点数120,输出节点数84
    BatchNorm(num_features=84, num_dims=2),
    nn.ReLU(), 
    nn.Linear(84, 10) # 全连接层3:输入节点数84,输出节点数10(对应10个分类)
)

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size)
# lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# plt.show()

# loss 0.200, train acc 0.925, test acc 0.812
# 34957.3 examples/sec on cuda:0

# loss 0.189, train acc 0.928, test acc 0.894
# 33471.2 examples/sec on cuda:0


#简明实现
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.ReLU(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(256, 120), nn.BatchNorm1d(120), nn.ReLU(),
    nn.Linear(120, 84), nn.BatchNorm1d(84), nn.ReLU(),
    nn.Linear(84, 10)
)
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()

# nn.Sigmoid()
# loss 0.263, train acc 0.902, test acc 0.833
# 46935.0 examples/sec on cuda:0

# nn.ReLU()
# loss 0.224, train acc 0.914, test acc 0.874
# 44479.2 examples/sec on cuda:0
"""
通常高级API变体运行速度快得多,因为它的代码已编译为C++或CUDA,而我们的自定义代码由Python实现。
"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/754116
推荐阅读
相关标签
  

闽ICP备14008679号