赞
踩
1. 导入库并设置参数和正确答案;
2. 图像预处理:灰度=>滤波去噪=>Canny边缘算子处理;
3. 找到并扶正目标区域(试卷):检测并绘制所有轮廓=>筛选出试卷轮廓=>透视变换;
4. 在透视变换后的图中寻找试卷中的选项轮廓:二值化=>寻找轮廓=>筛选轮廓=>轮廓排序;
5. 答案匹配:在循环结构中,根据每个选项圆圈区域的像素占比判断所选的答案,并与正确
答案进行比对,最后格式化输出。
此项目中,环境依然使用的是信用卡实战项目中使用的pytorch环境。
所有自定义的函数都是前面信用卡实战和OCR识别中用过的,所以不再进行解释,整体代码也无过多难以理解的地方,具体见如下详细注释:
- #导入工具包
- import numpy as np
- import argparse
- import imutils
- import cv2
-
- # 设置参数
- ap = argparse.ArgumentParser()
- ap.add_argument("-i", "--image", required=True,
- help="path to the input image")
- args = vars(ap.parse_args())
-
- # 正确答案
- ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
-
- def order_points(pts):
- # 一共4个坐标点
- rect = np.zeros((4, 2), dtype = "float32")
-
- # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
- # 计算左上,右下
- s = pts.sum(axis = 1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
-
- # 计算右上和左下
- diff = np.diff(pts, axis = 1)
- rect[1] = pts[np.argmin(diff)]
- rect[3] = pts[np.argmax(diff)]
-
- return rect
-
- def four_point_transform(image, pts):
- # 获取输入坐标点
- rect = order_points(pts)
- (tl, tr, br, bl) = rect
-
- # 计算输入的w和h值
- widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
- widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
- maxWidth = max(int(widthA), int(widthB))
-
- heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
- heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
- maxHeight = max(int(heightA), int(heightB))
-
- # 变换后对应坐标位置
- dst = np.array([
- [0, 0],
- [maxWidth - 1, 0],
- [maxWidth - 1, maxHeight - 1],
- [0, maxHeight - 1]], dtype = "float32")
-
- # 计算变换矩阵
- M = cv2.getPerspectiveTransform(rect, dst)
- warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
-
- # 返回变换后结果
- return warped
- def sort_contours(cnts, method="left-to-right"):
- reverse = False
- i = 0
- if method == "right-to-left" or method == "bottom-to-top":
- reverse = True
- if method == "top-to-bottom" or method == "bottom-to-top":
- i = 1
- boundingBoxes = [cv2.boundingRect(c) for c in cnts]
- (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
- key=lambda b: b[1][i], reverse=reverse))
- return cnts, boundingBoxes
- def cv_show(name,img):
- cv2.imshow(name, img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
-
- # 预处理
- image = cv2.imread(args["image"])
- contours_img = image.copy()
- #灰度
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- #滤波
- blurred = cv2.GaussianBlur(gray, (5, 5), 0)
- cv_show('blurred',blurred)
- #计算边缘
- edged = cv2.Canny(blurred, 75, 200)
- cv_show('edged',edged)
-
- # 轮廓检测
- cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) #红色线框绘出轮廓
- cv_show('contours_img',contours_img)
- docCnt = None
-
- # 确保检测到了
- if len(cnts) > 0:
- # 根据轮廓面积大小进行排序
- cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
-
- # 遍历每一个轮廓
- for c in cnts:
- # 近似
- peri = cv2.arcLength(c, True)
- approx = cv2.approxPolyDP(c, 0.02 * peri, True)
-
- # 准备做透视变换
- if len(approx) == 4:
- docCnt = approx
- break
- # 执行透视变换
- warped = four_point_transform(gray, docCnt.reshape(4, 2))
- cv_show('warped',warped)
- # Otsu's 阈值处理-二值化
- thresh = cv2.threshold(warped, 0, 255,
- cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
- cv_show('thresh',thresh)
- thresh_Contours = thresh.copy()
- # 找到每一个圆圈轮廓
- cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) #因为是单通道,所以不显示轮廓
- cv_show('thresh_Contours',thresh_Contours)
- questionCnts = []
-
- # 遍历
- for c in cnts:
- # 计算比例和大小
- (x, y, w, h) = cv2.boundingRect(c)
- ar = w / float(h)
-
- # 根据实际情况指定标准
- if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
- questionCnts.append(c)
-
- # 按照从上到下进行排序
- questionCnts = sort_contours(questionCnts,
- method="top-to-bottom")[0]
- correct = 0
-
- # 每排有5个选项
- #q为enumerate对象中的索引;i为对应索引的真实值
- for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
- # 排序
- cnts = sort_contours(questionCnts[i:i + 5])[0]
- bubbled = None
-
- # 遍历每一个结果
- for (j, c) in enumerate(cnts):
- # 使用mask来判断结果
- mask = np.zeros(thresh.shape, dtype="uint8") #用0数组建立掩膜mask
- #在mask上依次遍历每个选项的轮廓
- cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
- cv_show('mask',mask)
- # 通过计算非零点数量来算是否选择这个答案
- #将thresh和mask进行图像的“与”运算,即只显示掩膜内的部分
- mask = cv2.bitwise_and(thresh, thresh, mask=mask)
- #计算像素值不为0的像素数
- total = cv2.countNonZero(mask)
-
- # 通过阈值判断每一行哪个选项被涂黑
- if bubbled is None or total > bubbled[0]:
- bubbled = (total, j)
-
- # 对比正确答案
- color = (0, 0, 255)
- k = ANSWER_KEY[q]
-
- # 判断是否正确
- if k == bubbled[1]:
- color = (0, 255, 0) #这一步貌似没什么必要
- correct += 1
-
- # 绘图
- cv2.drawContours(warped, [cnts[k]], -1, color, 3)
-
-
- score = (correct / 5.0) * 100
- print("[INFO] score: {:.2f}%".format(score))
- cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
- cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
- cv2.imshow("Original", image)
- cv2.imshow("Exam", warped)
- cv2.waitKey(0)
此项目到处结束。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。