赞
踩
▼最近直播超级多,预约保你有收获
—1—
为什么要对 GraphRAG 本地部署?
微软开源 GraphRAG 后,热度越来越高,目前 GraphRAG 只支持 OpenAI 的闭源大模型,导致部署后使用范围大大受限,本文通过 GraphRAG 源码的修改,来支持更广泛的 Embedding 模型和开源大模型,从而使得 GraphRAG 的更容易上手使用。
如果对 GrapRAG 还不太熟悉的同学,可以看我之前写的两篇文章 《微软重磅开源 GraphRAG:新一代 RAG 技术来了!》 和《GraphRAG 项目升级!现已支持 Ollama 本地模型接入,打造交互式 UI 体验》
—2—
GraphRAG 一键安装
第一步、安装 GraphRAG
需要 Python 3.10-3.12 环境。
第二步、创建知识数据文件夹
安装完整后,需要创建一个文件夹,用来存储你的知识数据,目前 GraphRAG 只支持 txt 和 csv 格式。
第三步、准备一份数据放在 /ragtest/input 目录下
第四步、初始化工作区
首先,我们需要运行以下命令来初始化。
其次,我们第二步已经准备了 ragtest 目录,运行以下命令完成初始化。
运行完成后,在 ragtest 目录下生成以下两个文件:.env
和settings.yaml
。ragtest 目录下的结构如下:
.env
文件包含了运行 GraphRAG 管道所需的环境变量。如果您检查该文件,您会看到一个定义的环境变量,GRAPHRAG_API_KEY=<API_KEY>
。这是 OpenAI API 或 Azure OpenAI 端点的 API 密钥。您可以用自己的 API 密钥替换它。
settings.yaml
文件包含了管道的设置。您可以修改此文件以更改管道的设置。
—3—
修改配置文件支持本地部署大模型
第一步、确保已安装 Ollama
如果你还没安装或者不会安装,可以参考我之前写的文章《Spring AI + Ollama 快速构建大模型应用程序(含源码)》。
第二步、确保已安装以下本地模型
- Embedding 嵌入模型
- quentinz/bge-large-zh-v1.5:latest
- LLM 大模型
- gemma2:9b
第三步、修改 settings.yaml 以支持以上两个本地模型,以下是修改后的文件
encoding_model: cl100k_base skip_workflows: [] llm: api_key: ollama type: openai_chat # or azure_openai_chat model: gemma2:9b # 你 ollama 中的本地 llm 模型,可以换成其他的,只要你安装了就可以 model_supports_json: true # recommended if this is available for your model. max_tokens: 2048 api_base: http://localhost:11434/v1 # 接口注意是v1 concurrent_requests: 1 # the number of parallel inflight requests that may be made parallelization: stagger: 0.3 async_mode: threaded # or asyncio embeddings: async_mode: threaded # or asyncio llm: api_key: ollama type: openai_embedding # or azure_openai_embedding model: quentinz/bge-large-zh-v1.5:latest # 你 ollama 中的本地 Embeding 模型,可以换成其他的,只要你安装了就可以 api_base: http://localhost:11434/api # 注意是 api concurrent_requests: 1 # the number of parallel inflight requests that may be made chunks: size: 300 overlap: 100 group_by_columns: [id] # by default, we don't allow chunks to cross documents input: type: file # or blob file_type: text # or csv base_dir: "input" file_encoding: utf-8 file_pattern: ".*\\.txt$" cache: type: file # or blob base_dir: "cache" storage: type: file # or blob base_dir: "output/${timestamp}/artifacts" reporting: type: file # or console, blob base_dir: "output/${timestamp}/reports" entity_extraction: prompt: "prompts/entity_extraction.txt" entity_types: [organization,person,geo,event] max_gleanings: 0 summarize_descriptions: prompt: "prompts/summarize_descriptions.txt" max_length: 500 claim_extraction: prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 0 community_report: prompt: "prompts/community_report.txt" max_length: 2000 max_input_length: 8000 cluster_graph: max_cluster_size: 10 embed_graph: enabled: false # if true, will generate node2vec embeddings for nodes umap: enabled: false # if true, will generate UMAP embeddings for nodes snapshots: graphml: false raw_entities: false top_level_nodes: false local_search: max_tokens: 5000 global_search: max_tokens: 5000
第四步、运行 GraphRAG 构建知识图谱索引
构建知识图谱的索引需要一定的时间,构建过程如下所示:
—4—
修改源码支持本地部署大模型
接下来修改源码,保证进行 local 和 global 查询时给出正确的结果。
第一步、修改成本地的 Embedding 模型
修改源代码的目录和文件:
.../Python/Python310/site-packages/graphrag/llm/openai/openai_embeddings_llm.py"
修改后的源码如下:
- # Copyright (c) 2024 Microsoft Corporation.
- # Licensed under the MIT License
-
-
- """The EmbeddingsLLM class."""
-
-
- from typing_extensions import Unpack
-
-
- from graphrag.llm.base import BaseLLM
- from graphrag.llm.types import (
- EmbeddingInput,
- EmbeddingOutput,
- LLMInput,
- )
-
-
- from .openai_configuration import OpenAIConfiguration
- from .types import OpenAIClientTypes
- import ollama
-
-
-
-
- class OpenAIEmbeddingsLLM(BaseLLM[EmbeddingInput, EmbeddingOutput]):
- """A text-embedding generator LLM."""
-
-
- _client: OpenAIClientTypes
- _configuration: OpenAIConfiguration
-
-
- def __init__(self, client: OpenAIClientTypes, configuration: OpenAIConfiguration):
- self.client = client
- self.configuration = configuration
-
-
- async def _execute_llm(
- self, input: EmbeddingInput, **kwargs: Unpack[LLMInput]
- ) -> EmbeddingOutput | None:
- args = {
- "model": self.configuration.model,
- **(kwargs.get("model_parameters") or {}),
- }
- embedding_list = []
- for inp in input:
- embedding = ollama.embeddings(model="quentinz/bge-large-zh-v1.5:latest",prompt=inp)
- embedding_list.append(embedding["embedding"])
- return embedding_list
- # embedding = await self.client.embeddings.create(
- # input=input,
- # **args,
- # )
- # return [d.embedding for d in embedding.data]
第二步、继续修改 Embedding 模型
修改源代码的目录和文件:
.../Python/Python310/site-packages/graphrag/query/llm/oai/embedding.py"
修改后的源码如下:
- # Copyright (c) 2024 Microsoft Corporation.
- # Licensed under the MIT License
-
-
- """OpenAI Embedding model implementation."""
-
-
- import asyncio
- from collections.abc import Callable
- from typing import Any
-
-
- import numpy as np
- import tiktoken
- from tenacity import (
- AsyncRetrying,
- RetryError,
- Retrying,
- retry_if_exception_type,
- stop_after_attempt,
- wait_exponential_jitter,
- )
-
-
- from graphrag.query.llm.base import BaseTextEmbedding
- from graphrag.query.llm.oai.base import OpenAILLMImpl
- from graphrag.query.llm.oai.typing import (
- OPENAI_RETRY_ERROR_TYPES,
- OpenaiApiType,
- )
- from graphrag.query.llm.text_utils import chunk_text
- from graphrag.query.progress import StatusReporter
-
-
- from langchain_community.embeddings import OllamaEmbeddings
-
-
-
-
-
-
- class OpenAIEmbedding(BaseTextEmbedding, OpenAILLMImpl):
- """Wrapper for OpenAI Embedding models."""
-
-
- def __init__(
- self,
- api_key: str | None = None,
- azure_ad_token_provider: Callable | None = None,
- model: str = "text-embedding-3-small",
- deployment_name: str | None = None,
- api_base: str | None = None,
- api_version: str | None = None,
- api_type: OpenaiApiType = OpenaiApiType.OpenAI,
- organization: str | None = None,
- encoding_name: str = "cl100k_base",
- max_tokens: int = 8191,
- max_retries: int = 10,
- request_timeout: float = 180.0,
- retry_error_types: tuple[type[BaseException]] = OPENAI_RETRY_ERROR_TYPES, # type: ignore
- reporter: StatusReporter | None = None,
- ):
- OpenAILLMImpl.__init__(
- self=self,
- api_key=api_key,
- azure_ad_token_provider=azure_ad_token_provider,
- deployment_name=deployment_name,
- api_base=api_base,
- api_version=api_version,
- api_type=api_type, # type: ignore
- organization=organization,
- max_retries=max_retries,
- request_timeout=request_timeout,
- reporter=reporter,
- )
-
-
- self.model = model
- self.encoding_name = encoding_name
- self.max_tokens = max_tokens
- self.token_encoder = tiktoken.get_encoding(self.encoding_name)
- self.retry_error_types = retry_error_types
-
-
- def embed(self, text: str, **kwargs: Any) -> list[float]:
- """
- Embed text using OpenAI Embedding's sync function.
- For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
- Please refer to: https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
- """
- token_chunks = chunk_text(
- text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
- )
- chunk_embeddings = []
- chunk_lens = []
- for chunk in token_chunks:
- try:
- embedding, chunk_len = self._embed_with_retry(chunk, **kwargs)
- chunk_embeddings.append(embedding)
- chunk_lens.append(chunk_len)
- # TODO: catch a more specific exception
- except Exception as e: # noqa BLE001
- self._reporter.error(
- message="Error embedding chunk",
- details={self.__class__.__name__: str(e)},
- )
-
-
- continue
- chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
- chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
- return chunk_embeddings.tolist()
-
-
- async def aembed(self, text: str, **kwargs: Any) -> list[float]:
- """
- Embed text using OpenAI Embedding's async function.
- For text longer than max_tokens, chunk texts into max_tokens, embed each chunk, then combine using weighted average.
- """
- token_chunks = chunk_text(
- text=text, token_encoder=self.token_encoder, max_tokens=self.max_tokens
- )
- chunk_embeddings = []
- chunk_lens = []
- embedding_results = await asyncio.gather(*[
- self._aembed_with_retry(chunk, **kwargs) for chunk in token_chunks
- ])
- embedding_results = [result for result in embedding_results if result[0]]
- chunk_embeddings = [result[0] for result in embedding_results]
- chunk_lens = [result[1] for result in embedding_results]
- chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens) # type: ignore
- chunk_embeddings = chunk_embeddings / np.linalg.norm(chunk_embeddings)
- return chunk_embeddings.tolist()
-
-
- def _embed_with_retry(
- self, text: str | tuple, **kwargs: Any
- ) -> tuple[list[float], int]:
- try:
- retryer = Retrying(
- stop=stop_after_attempt(self.max_retries),
- wait=wait_exponential_jitter(max=10),
- reraise=True,
- retry=retry_if_exception_type(self.retry_error_types),
- )
- for attempt in retryer:
- with attempt:
- embedding = (
- OllamaEmbeddings(
- model=self.model,
- ).embed_query(text)
- or []
- )
- return (embedding, len(text))
- except RetryError as e:
- self._reporter.error(
- message="Error at embed_with_retry()",
- details={self.__class__.__name__: str(e)},
- )
- return ([], 0)
- else:
- # TODO: why not just throw in this case?
- return ([], 0)
-
-
- async def _aembed_with_retry(
- self, text: str | tuple, **kwargs: Any
- ) -> tuple[list[float], int]:
- try:
- retryer = AsyncRetrying(
- stop=stop_after_attempt(self.max_retries),
- wait=wait_exponential_jitter(max=10),
- reraise=True,
- retry=retry_if_exception_type(self.retry_error_types),
- )
- async for attempt in retryer:
- with attempt:
- embedding = (
- await OllamaEmbeddings(
- model=self.model,
- ).embed_query(text) or [] )
- return (embedding, len(text))
- except RetryError as e:
- self._reporter.error(
- message="Error at embed_with_retry()",
- details={self.__class__.__name__: str(e)},
- )
- return ([], 0)
- else:
- # TODO: why not just throw in this case?
- return ([], 0)
—5—
GraphRAG 效果测试
第一、local 查询
第二、global 查询
—6—
加我微信
有很多企业级落地实战案例,不方便公开发公众号,我会直接分享在朋友圈,欢迎你扫码加我个人微信来看
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。