赞
踩
什么是pandas
pandas是一种Python数据分析的利器,是一个开源的数据分析包,最初是应用于金融数据分析工具而开发出来的,因此pandas为时间序列分析提供了很好的支持。pandas是PyData项目的一部分。
官方文档:http://pandas.pydata.org/pandas-docs/stable/
安装pandas
Python版本要求:2.7、3.4、3.5、3.6
依赖Python库:setuptools、NumPy、python-dateutil、pytz
安装方式:
Python的Anaconda发行版,已经安装好pandas库,不需要另外安装
使用Anaconda界面安装,选择对应的pandas进行勾选安装即可
使用Anaconda命令安装:conda install pandas
使用PyPi安装命令安装:pip install pandas
使用Anaconda界面安装pandas
pandas操作
pandas引入约定
from pandas import Series,
DataFrame import pandas as pd
pandas基本数据结构
pandas中主要有两种数据结构,分别是:Series和DataFrame。
Series:一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。注意:Series中的索引值是可以重复的。
DataFrame:一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。
Series:通过一维数组创建
练习
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
Series:通过字典的方式创建
练习
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
Series值的获取
Series值的获取主要有两种方式:
通过方括号+索引的方式读取对应索引的数据,有可能返回多条数据
通过方括号+下标值的方式读取对应下标值的数据,下标值的取值范围为:[0,len(Series.values));另外下标值也可以是负数,表示从右往左获取数据
Series获取多个值的方式类似NumPy中的ndarray的切片操作,通过方括号+下标值/索引值+冒号(:)的形式来截取series对象中的一部分数据。
Series的运算
NumPy中的数组运算,在Series中都保留了,均可以使用,并且Series进行数组运算的时候,索引与值之间的映射关系不会发生改变。
注意:其实在操作Series的时候,基本上可以把Series看成NumPy中的ndarray数组来进行操作。ndarray数组的绝大多数操作都可以应用到Series上。
练习
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
Series缺失值检测
pandas中的isnull和notnull两个函数可以用于在Series中检测缺失值,这两个函数的返回时一个布尔类型的Series
Series自动对齐
当多个series对象之间进行运算的时候,如果不同series之间具有不同的索引值,那么运算会自动对齐不同索引值的数据,如果某个series没有某个索引值,那么最终结果会赋值为NaN。
Series及其索引的name属性
Series对象本身以及索引都具有一个name属性,默认为空,根据需要可以进行赋值操作
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
DataFrame: 通过二维数组创建
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
DataFrame: 通过字典的方式创建
索引对象
不管是Series还是DataFrame对象,都有索引对象。
索引对象负责管理轴标签和其它元数据(eg:轴名称等等)
通过索引可以从Series、DataFrame中获取值或者对某个索引值进行重新赋值
Series或者DataFrame的自动对齐功能是通过索引实现的
DataFrame数据获取
可以直接通过列索引获取指定列的数据, eg: df[column_name]
如果需要获取指定行的数据的话,需要通过ix方法来获取对应行索引的行数据,eg: df.ix[index_name]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
pandas基本功能
数据文件读取/文本数据读取
索引、选取和数据过滤
算法运算和数据对齐
函数的应用和映射
重置索引
pandas:数据文件读取
通过pandas提供的read_xxx相关的函数可以读取文件中的数据,并形成DataFrame,常用的数据读取方法为:read_csv,主要可以读取文本类型的数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
pandas:数据过滤获取
通过DataFrame的相关方式可以获取对应的列或者数据形成一个新的DataFrame, 方便后续进行统计计算。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
pandas:缺省值NaN处理方法
对于DataFrame/Series中的NaN一般采取的方式为删除对应的列/行或者填充一个默认值
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
pandas:常用的数学统计方法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
pandas:相关系数与协方差
相关系数(Correlation coefficient):反映两个样本/样本之间的相互关系以及之间的相关程度。在COV的基础上进行了无量纲化操作,也就是进行了标准化操作。
协方差(Covariance, COV):反映两个样本/变量之间的相互关系以及之间的相关程度。
通俗理解协方差:如果有X,Y两个变量,每时刻的"X值与均值只差"乘以"Y值与其均值只差"得到一个乘积,再对这每时刻的乘积求和并求出均值。
如果协方差为正,说明X,Y同向变化,协方差越大说明同向程度越高;如果协方差为负,说明X,Y反向运动,协方差越小说明方向程度越高。
pandas:唯一值、值计数以及成员资格
unique方法用于获取Series中的唯一值数组(去重数据后的数组)
value_counts方法用于计算一个Series中各值的出现频率
isin方法用于判断矢量化集合的成员资格,可用于选取Series中或者DataFrame中列中数据的子集
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
pandas:层次索引
在某一个方向拥有多个(两个及两个以上)索引级别
通过层次化索引,pandas能够以较低维度形式处理高纬度的数据
通过层次化索引,可以按照层次统计数据
层次索引包括Series层次索引和DataFrame层次索引
pandas:按照层次索引进行统计数据
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。