当前位置:   article > 正文

【数据结构与算法】Kadane‘s算法(动态规划、最大子数组和)_kadane算法

kadane算法

一、算法原理

Kadane's算法是一种用于解决最大子数组和问题的动态规划算法。这类问题的目标是在给定整数数组中找到一个连续的子数组,使其元素之和最大(数组含有负数)。

算法的核心思想是通过迭代数组的每个元素,维护两个变量来跟踪局部最优解和全局最优解。

以下是Kadane’s算法的详细步骤:

  1. 初始化:

    • 令 maxEndingHere 表示在当前位置结束的最大子数组和,初始值为数组的第一个元素。
    • 令 maxSoFar 表示全局最大子数组和,初始值也为数组的第一个元素。
  2. 迭代:

    • 从数组的第二个元素开始迭代。

    • 对于每个元素,计算在当前位置结束的最大子数组和:
      maxEndingHere = max(nums[i], maxEndingHere + nums[i]);
      这表示要么继续当前子数组,要么从当前位置开始一个新的子数组。

    • 更新全局最大子数组和:
      maxSoFar = max(maxSoFar, maxEndingHere);
      如果在当前位置结束的子数组和大于全局最大和,更新全局最大和。

  3. 返回结果:

    • 当迭代完成后,maxSoFar 中存储的即为最大子数组和。

复杂度:

  • 时间复杂度:O(n),其中 n 为 nums 数组的长度。我们只需要遍历一遍数组即可求得答案。
  • 空间复杂度:O(1)。我们只需要常数空间存放若干变量。

图例:
在这里插入图片描述

简要说明:(如过当前值比前面的局部最大值+当前值还大,那么就从当前值开始继续计算局部最大值)

  1. i=0,maxEndingHere 、maxSoFar 初始值都为数组第一个元素,-2;
  2. 开始循环,i=1,maxEndingHere = max(nums[1], maxEndingHere + nums[1]),即maxEndingHere = max(1, -2 + 1)=1,maxSoFar=1;
  3. i=2, maxEndingHere = max(nums[2], maxEndingHere + nums[2]),即maxEndingHere = max(-3, 1 - 3)=-2,maxSoFar=1;
  4. i=3,maxEndingHere = max(nums[3], maxEndingHere + nums[3]),即maxEndingHere = max(4, -2 + 4)=4,maxSoFar=4;

二、例题

2.1 最大子数组和

在这里插入图片描述

解答:

int maxSubArray(int* nums, int numsSize) {
    int maxEndingHere  = nums[0], maxSoFar = nums[0];
    for (int i = 1; i < numsSize; i++) {
        maxEndingHere  = fmax(maxEndingHere  + nums[i], nums[i]);
        maxSoFar = fmax(maxSoFar, maxEndingHere );
    }
    return maxSoFar;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

fmax是<math.h>中的函数,用于比较2个数字的大小,双精度。

简单换个写法:

int maxSubArray(int* nums, int numsSize) {
    int maxEndingHere  = nums[0], maxSoFar = nums[0];
    for (int i = 1; i < numsSize; i++) {
        maxEndingHere  = maxEndingHere  + nums[i]>nums[i]?maxEndingHere  + nums[i]:nums[i];
        maxSoFar = maxSoFar>maxEndingHere?maxSoFar:maxEndingHere;
    }
    return maxSoFar;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

简单用三目表达式代替fmax函数。

2.2 环形子数组的最大和

在这里插入图片描述

解答:

int maxSubarraySumCircular(int* nums, int numsSize) {
    if (nums == NULL || numsSize == 0) return 0;
    int maxSum = nums[0], minSum = nums[0];
    int maxCur = nums[0], minCur = nums[0];
    int sum = nums[0];

    for (int i = 1; i < numsSize; i++) {
        sum += nums[i];
        maxCur = fmax(nums[i], maxCur + nums[i]);
        minCur = fmin(nums[i], minCur + nums[i]);
        maxSum = fmax(maxSum, maxCur);
        minSum = fmin(minSum, minCur);
    }

    if (maxSum < 0) return maxSum; // 如果所有数都是负数,返回最大值
    return fmax(maxSum, sum - minSum); // 返回“不跨越头尾的最大子数组和”和“跨越头尾的最大子数组和”中的较大者
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/922197
推荐阅读
相关标签
  

闽ICP备14008679号