当前位置:   article > 正文

filebeat,kafka,clickhouse,ClickVisual搭建轻量级日志平台_filebeat clickhouse kibana

filebeat clickhouse kibana

springboot集成链路追踪

  • springboot版本
<parent>
	<groupId>org.springframework.boot</groupId>
	<artifactId>spring-boot-starter-parent</artifactId>
	<version>2.6.3</version>
	<relativePath/> <!-- lookup parent from repository -->
</parent>
<dependencies>
	<dependency>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-web</artifactId>
	</dependency>
</dependencies>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 添加链路追踪sleuth依赖
    链路追踪有很多优秀的中间件,比如skywalking等,但是skywalking需要部署oap服务生成追踪id,为了减少架构复杂度,决定采用sleuth。
<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-sleuth</artifactId>
	<version>3.1.1</version>
</dependency>
  • 1
  • 2
  • 3
  • 4
  • 5

想进一步减少架构复杂度,也可以自定义生成traceId,可以参考之前的文章实现
https://blog.csdn.net/qq_41633199/article/details/127482748?spm=1001.2014.3001.5502

kafka2.7.1设置

bin\windows\zookeeper-server-start.bat config\zookeeper.properties
  • 1
  • kafka设置
    • 配置数据存储
      在这里插入图片描述在这里插入图片描述
    • 配置zk连接
      在这里插入图片描述
    • 启动
## 启动kafka
bin\windows\kafka-server-start.bat config\server.properties
## 创建主题
bin\windows\kafka-topics.bat --zookeeper localhost:2181 --create --replication-factor 1 --partitions 1 --topic app_log
## 查看主题
bin\windows\kafka-topics.bat --list --zookeeper localhost:2181
# 生产消息
bin\windows\kafka-console-producer.bat --broker-list localhost:9092 --topic app_log
# 消息消费
bin\windows\kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic app_log --group app_log --from-beginning
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

应用日志logback配置

由于java异常日志输出堆栈的换行符会影响kafka engine日志解析(会当成多条日志分别解析导致报错),因此在FILE_FORMAT配置输出到日志文件的时候去除换行符。

<property name="CONSOLE_FORMAT" value="%highlight(%d{yyyy-MM-dd HH:mm:ss.SSS})|%highlight(%-5level{FATAL=Bright Red, ERROR=Bright Magenta, WARN=Bright Yellow, INFO=Bright Green, DEBUG=Bright Cyan, TRACE=Bright White})|%boldMagenta(%X{traceId})|%yellow(%thread)|%boldMagenta(%logger{36})|%green(%file#%method:%line)|%cyan(%msg%n)"/>
    <property name="FILE_FORMAT" value="%d{yyyy-MM-dd HH:mm:ss.SSS}|%level|%X{traceId}|%thread|%logger{36}|%file#%method:%line|%msg %replace(%ex){'[\r\n]+', ''}%nopex%n"/>

    <appender name="INFO_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>INFO</level>
        </filter>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <!-- 日志文件输出的文件名 -->
            <FileNamePattern>${LOG_HOME}/info/bill_log.%d{yyyy-MM-dd_HH}.log</FileNamePattern>
            <!-- 日志文件保留个数 -->
            <maxHistory>168</maxHistory>
            <cleanHistoryOnStart>true</cleanHistoryOnStart>
        </rollingPolicy>
        <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
            <pattern>${FILE_FORMAT}</pattern>
        </encoder>
    </appender>
    <!-- 开发环境 -->
    <springProfile name="dev">
        <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
            <encoder>
                <pattern>${CONSOLE_FORMAT}</pattern>
            </encoder>
        </appender>

        <root level="DEBUG">
            <appender-ref ref="CONSOLE"/>
            <appender-ref ref="INFO_FILE"/>
        </root>
    </springProfile>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

filebeat7.16.2收集应用日志推送kafka

  • 下载
https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.16.2-windows-x86_64.zip
  • 1
  • 修改配置
    kafka配置官网参考地址
https://www.elastic.co/guide/en/beats/filebeat/7.16/kafka-output.html
  • 1

在这里插入图片描述
在这里插入图片描述

设置传输kafka
在这里插入图片描述确保output只有一个

  • 启动filebeat
    在安装目录执行启动命令
filebeat -e -c filebeat.yml
  • 1

访问应用查看kafka消费效果
在这里插入图片描述

在这里插入图片描述

clickhouse设置

  • 宿主机配置host
172.27.x.x host.docker.internal
  • 1

由于clickhouse容器需访问本机kafka,需要解决通信问题

  • 启动
docker run -d --network=bridge -p 8123:8123 -p 9000:9000 -p 9009:9009 --name clickhouse-svr --add-host="host.docker.internal:172.27.xx.x" clickhouse/clickhouse-server:24.4.3.25
  • 1
  • 进入容器,执行命令设置分隔符保存到users.xml配置文件,以便重启容器后也能生效
    这里的设置主要取决于日志格式,我的项目是|号作为字段分隔符
set format_csv_delimiter = '|';
  • 1
  • 连接clickhouse,设置允许查询引擎表
clickhouse-client --stream_like_engine_allow_direct_select 1
  • 1
  • 选择数据库
use log;
  • 1
  • 创建kafka引擎表
CREATE TABLE LOG_KAFKA
(
    time DateTime64(3, 'Asia/Shanghai'),
	level String,
	trace_id String,
	thread String,
	logger String,
	method String,
	msg String
)
ENGINE = Kafka()
SETTINGS kafka_broker_list = 'host.docker.internal:9092',
	kafka_topic_list = 'app_log',
	kafka_group_name = 'app_log',
	kafka_num_consumers = 1,
	kafka_format = 'CSV',
	format_csv_delimiter  = '|';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 创建分区日志表,存储日志消息
create table APP_LOG(
	time DateTime64(3, 'Asia/Shanghai'),
	level String,
	trace_id String,
	thread String,
	logger String,
	method String,
	msg String
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(time)
ORDER BY time;
## 创建Metrialized View 抓取数据到日志表
CREATE MATERIALIZED VIEW vw_app_log TO APP_LOG AS
SELECT time,level,trace_id,thread,logger,method,msg FROM LOG_KAFKA;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 访问应用生产日志消息并查看clickhouse日志
    在这里插入图片描述

配置ClickVisual

docker run --name clickvisual -e EGO_CONFIG_PATH=/clickvisual/config/docker.toml -e EGO_LOG_WRITER=stderr -p 19001:19001 -v D:\download\clickvisual\config:/clickvisual/config -d clickvisual/clickvisual:latest
  • 1
  • 配置数据连接
    用初始账号与密码clickvisual/clickvisual登录管理台http://localhost:19001
    点击初始化数据库后进入日志库配置页
    在这里插入图片描述clickhouse数据源连接格式clickhouse://username:password@host1:9000,host2:9000/database?dial_timeout=200ms&max_execution_time=60,因为我未给clickhouse设置权限认证,因此username:password@可以省略
    在这里插入图片描述创建好实例后回到日志页面,选择刚创建的实例右键接入已有日志库,配置日志数据表
    在这里插入图片描述

查看效果

访问前面写的空指针异常接口,再刷新ClickVisual页面
在这里插入图片描述
通过链路id查询效果
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/923557
推荐阅读
相关标签
  

闽ICP备14008679号