当前位置:   article > 正文

Sleuth + Zipkin 微服务分布式链路追踪_sleuth好用吗,感觉很鸡肋啊

sleuth好用吗,感觉很鸡肋啊

在开发环境中对业务问题的排查可以debugger计算时差等问题进行处理,如果架构复杂微服务嗲用众多,这样的方式就显得鸡肋。

如何快速发现问题?

如何判断故障影响范围?

如何梳理服务依赖以及依赖的合理性?

如何分析链路性能问题以及实现容量规划?

分布式链路追踪:

就是将一次分布式请求还原成调用链路,进行日志记录、性能监控并将一次分布式请求的调用情况集中展示。

比如各个服务节点上的耗时、请求具体到达那台机器上、每个服务节点的请求状态等等

 Sleuth:

引入依赖,将依赖放入到父工程中

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

重启项目:通过网关访问创建订单,控制台输出一下内容,就完成了sleuth的集成

# 服务名称     traceId(链路id)        spanId            是否将链路的追踪结果输出到第三方

wdz-gateway,4eeae5ea48aa4abc,4eeae5ea48aa4abc,false

wdz-order,     4eeae5ea48aa4abc,7620d991a5dfc5bb,false

ZipKin集成

zipkin是twitter的开源项目,基于Google Dapper实现,它致力于收集服务的定时数据,以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现

 

 安装服务端:

可通过GITHUB 下载源码,进行打包使用

  1. # get the latest source
  2. git clone https://github.com/openzipkin/zipkin
  3. cd zipkin
  4. # Build the server and also make its dependencies
  5. ./mvnw -DskipTests --also-make -pl zipkin-server clean install
  6. # Run the server
  7. java -jar ./zipkin-server/target/zipkin-server-*exec.jar

或者直接下载jar包运行

https://repo1.maven.org/maven2/io/zipkin/java/zipkin-server/2.12.9/zipkin-server-2.12.9-exec.jar​​​​​​

访问路径:

localhost:9411

集成客户端引入依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

配置文件:

spring:
   zipkin:
      base-url: http://l27.0.0.1:9411/ # zipkin server 的请求地址
      discovery-client-enabled: false # 让nacos把它当成一个URL,而不要当做服务名
   sleuth:
      sampler:
         probability: 1.0  #采样百分比

重启服务通过网关访问product/order

 能够很清楚的看到请求耗时链路等信息

持久化:

zipkin默认是将信息存入缓存中的,重启之后数据将会消失

mysql方式

  1. CREATE TABLE IF NOT EXISTS zipkin_spans (
  2. `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  3. `trace_id` BIGINT NOT NULL,
  4. `id` BIGINT NOT NULL,
  5. `name` VARCHAR(255) NOT NULL,
  6. `parent_id` BIGINT,
  7. `debug` BIT(1),
  8. `start_ts` BIGINT COMMENT 'Span.timestamp(): epoch micros used for endTs query and to implement TTL',
  9. `duration` BIGINT COMMENT 'Span.duration(): micros used for minDuration and maxDuration query'
  10. ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
  11. ALTER TABLE zipkin_spans ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `id`) COMMENT 'ignore insert on duplicate';
  12. ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`, `id`) COMMENT 'for joining with zipkin_annotations';
  13. ALTER TABLE zipkin_spans ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTracesByIds';
  14. ALTER TABLE zipkin_spans ADD INDEX(`name`) COMMENT 'for getTraces and getSpanNames';
  15. ALTER TABLE zipkin_spans ADD INDEX(`start_ts`) COMMENT 'for getTraces ordering and range';
  16. CREATE TABLE IF NOT EXISTS zipkin_annotations (
  17. `trace_id_high` BIGINT NOT NULL DEFAULT 0 COMMENT 'If non zero, this means the trace uses 128 bit traceIds instead of 64 bit',
  18. `trace_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.trace_id',
  19. `span_id` BIGINT NOT NULL COMMENT 'coincides with zipkin_spans.id',
  20. `a_key` VARCHAR(255) NOT NULL COMMENT 'BinaryAnnotation.key or Annotation.value if type == -1',
  21. `a_value` BLOB COMMENT 'BinaryAnnotation.value(), which must be smaller than 64KB',
  22. `a_type` INT NOT NULL COMMENT 'BinaryAnnotation.type() or -1 if Annotation',
  23. `a_timestamp` BIGINT COMMENT 'Used to implement TTL; Annotation.timestamp or zipkin_spans.timestamp',
  24. `endpoint_ipv4` INT COMMENT 'Null when Binary/Annotation.endpoint is null',
  25. `endpoint_ipv6` BINARY(16) COMMENT 'Null when Binary/Annotation.endpoint is null, or no IPv6 address',
  26. `endpoint_port` SMALLINT COMMENT 'Null when Binary/Annotation.endpoint is null',
  27. `endpoint_service_name` VARCHAR(255) COMMENT 'Null when Binary/Annotation.endpoint is null'
  28. ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
  29. ALTER TABLE zipkin_annotations ADD UNIQUE KEY(`trace_id_high`, `trace_id`, `span_id`, `a_key`, `a_timestamp`) COMMENT 'Ignore insert on duplicate';
  30. ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`, `span_id`) COMMENT 'for joining with zipkin_spans';
  31. ALTER TABLE zipkin_annotations ADD INDEX(`trace_id_high`, `trace_id`) COMMENT 'for getTraces/ByIds';
  32. ALTER TABLE zipkin_annotations ADD INDEX(`endpoint_service_name`) COMMENT 'for getTraces and getServiceNames';
  33. ALTER TABLE zipkin_annotations ADD INDEX(`a_type`) COMMENT 'for getTraces';
  34. ALTER TABLE zipkin_annotations ADD INDEX(`a_key`) COMMENT 'for getTraces';
  35. CREATE TABLE IF NOT EXISTS zipkin_dependencies (
  36. `day` DATE NOT NULL,
  37. `parent` VARCHAR(255) NOT NULL,
  38. `child` VARCHAR(255) NOT NULL,
  39. `call_count` BIGINT
  40. ) ENGINE=InnoDB ROW_FORMAT=COMPRESSED CHARACTER SET=utf8 COLLATE utf8_general_ci;
  41. ALTER TABLE zipkin_dependencies ADD UNIQUE KEY(`day`, `parent`, `child`);

启动命令:

java -jar zipkin.jar --STORAGE_TYPE=mysql  --MYSQL_HOST=127.0.0.1 --MYSQL_TCP_PORT=3306 --MYSQL_DB=zipkin --MYSQL_USER=root --MYSQL_PASS=root

eleasticsearch方式

启动方式:

java -jar zipkin.jar  --STORAGE_TYPE=elasticsearch --ES-HOST=localhost:9200

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/951775
推荐阅读
  

闽ICP备14008679号