赞
踩
-
- #include <fstream>
-
- #include <sstream>
-
- #include <iostream>
-
- #include <opencv2/dnn.hpp>
-
- #include <opencv2/imgproc.hpp>
-
- #include <opencv2/highgui.hpp>
-
- #include<vector>
-
-
-
-
-
- using namespace std;
-
- using namespace cv;
-
- using namespace dnn;
-
-
-
- vector<string> classes;
-
-
-
- vector<String> getOutputsNames(Net&net)
-
- {
-
- static vector<String> names;
-
- if (names.empty())
-
- {
-
- //Get the indices of the output layers, i.e. the layers with unconnected outputs
-
- vector<int> outLayers = net.getUnconnectedOutLayers();
-
-
-
- //get the names of all the layers in the network
-
- vector<String> layersNames = net.getLayerNames();
-
-
-
- // Get the names of the output layers in names
-
- names.resize(outLayers.size());
-
- for (size_t i = 0; i < outLayers.size(); ++i)
-
- names[i] = layersNames[outLayers[i] - 1];
-
- }
-
- return names;
-
- }
-
- void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
-
- {
-
- //Draw a rectangle displaying the bounding box
-
- rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);
-
-
-
- //Get the label for the class name and its confidence
-
- string label = format("%.5f", conf);
-
- if (!classes.empty())
-
- {
-
- CV_Assert(classId < (int)classes.size());
-
- label = classes[classId] + ":" + label;
-
- }
-
-
-
- //Display the label at the top of the bounding box
-
- int baseLine;
-
- Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
-
- top = max(top, labelSize.height);
-
- rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
-
- putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
-
- }
-
- void postprocess(Mat& frame, const vector<Mat>& outs, float confThreshold, float nmsThreshold)
-
- {
-
- vector<int> classIds;
-
- vector<float> confidences;
-
- vector<Rect> boxes;
-
-
-
- for (size_t i = 0; i < outs.size(); ++i)
-
- {
-
- // Scan through all the bounding boxes output from the network and keep only the
-
- // ones with high confidence scores. Assign the box's class label as the class
- // with the highest score for the box.
- float* data = (float*)outs[i].data;
- for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
- {
- Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
- Point classIdPoint;
- double confidence;
- // Get the value and location of the maximum score
- minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
- if (confidence > confThreshold)
- {
- int centerX = (int)(data[0] * frame.cols);
- int centerY = (int)(data[1] * frame.rows);
- int width = (int)(data[2] * frame.cols);
- int height = (int)(data[3] * frame.rows);
- int left = centerX - width / 2;
- int top = centerY - height / 2;
-
- classIds.push_back(classIdPoint.x);
- confidences.push_back((float)confidence);
- boxes.push_back(Rect(left, top, width, height));
- }
- }
- }
-
- // Perform non maximum suppression to eliminate redundant overlapping boxes with
- // lower confidences
- vector<int> indices;
- NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
- for (size_t i = 0; i < indices.size(); ++i)
- {
- int idx = indices[i];
- Rect box = boxes[idx];
- drawPred(classIds[idx], confidences[idx], box.x, box.y,
- box.x + box.width, box.y + box.height, frame);
- }
- }
-
- int main()
- {
- string names_file = "/home/xxp/darknet/data/voc-mask.names";
- String model_def = "/home/xxp/darknet/cfg/yolov3-tiny-mask3.cfg";
- String weights = "/home/xxp/darknet/backup/yolov3-tiny-mask3_best.weights";
-
- int in_w, in_h;
- double thresh = 0.5;
- double nms_thresh = 0.25;
- in_w = in_h = 608;
-
- string img_path = "/home/xxp/darknet/testfiles/120.jpg";
-
- //read names
-
- ifstream ifs(names_file.c_str());
- string line;
- while (getline(ifs, line)) classes.push_back(line);
-
- //init model
- Net net = readNetFromDarknet(model_def, weights);
- net.setPreferableBackend(DNN_BACKEND_OPENCV);
- net.setPreferableTarget(DNN_TARGET_CPU);
-
- //read image and forward
- VideoCapture capture(0);// VideoCapture:OENCV中新增的类,捕获视频并显示出来
- while (1)
- {
- Mat frame, blob;
- capture >> frame;
-
-
- blobFromImage(frame, blob, 1 / 255.0, Size(in_w, in_h), Scalar(), true, false);
-
- vector<Mat> mat_blob;
- imagesFromBlob(blob, mat_blob);
-
- //Sets the input to the network
- net.setInput(blob);
-
- // Runs the forward pass to get output of the output layers
- vector<Mat> outs;
- net.forward(outs, getOutputsNames(net));
-
- postprocess(frame, outs, thresh, nms_thresh);
-
- vector<double> layersTimes;
- double freq = getTickFrequency() / 1000;
- double t = net.getPerfProfile(layersTimes) / freq;
- string label = format("Inference time for a frame : %.2f ms", t);
- putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));
-
- imshow("res", frame);
-
- waitKey(10);
- }
- return 0;
- }

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。