当前位置:   article > 正文

BP神经网络的反向传播(Back Propagation)_bp反向传播

bp反向传播

本文来自《老饼讲解-BP神经网络https://www.bbbdata.com/

BP神经网络更原始的名称是"多层线性感知机MLP",由于它在训练时使用梯度下降算法,并"反向传播Back Propagation Neural"地计算梯度,所以后来也称为BP神经网络。下面讲解什么是BP神经网络的反向传播。

一、什么是BP的反向传播

1.1 什么是反向传播

“反向传播指的是BP神经网络计算参数的梯度时的计算方式”,由于BP神经网络求解时所使用的是梯度下降算法(或其他算法),这些算法一般都需要利用误差函数对参数的梯度,因此,计算梯度是BP神经网络训练中重要的一部分,而反向传播式地计算梯度就是BP神经网络的特色,BP神经网络之所以叫BP(Back Propagation Neural Network)神经网络,指的正是它计算梯度时这种后馈的特色。
BP神经网络反向传播

1.2 反向传播的意义

而对于常用的三层BP神经网络的梯度推导,而可以简单地直接求导就可以,甚至不需要涉及到反向传播,反向传播更多是为了多层、深层的BP神经网络而提出的计算方法。反向传播的意义更多是体现在深度学习之中。
三层BP神经网络梯度推导过程:三层BP神经网络梯度推导过程

二、BP神经网络如何通过反向传播计算梯度

如下,是一个K层的BP神经网络:
在这里插入图片描述
不妨以第k-1层到第k层的参数 p ( k , k − 1 ) p^{(k,k-1)} p(k,k1)为例,分析它的梯度公式是什么
由于第k层节点是关于 p ( k , k − 1 ) p^{(k,k-1)} p(k,k1)的函数,且后一层的节点总是前一层节点的函数
如此一来, E ( p ( k , k − 1 ) ) E(p (k,k−1) ) E(p(k,k1))可以看成是如下一个超级复合函数:
E ( p ( k , k − 1 ) ) = E ( N ( K ) ( . . . ( N ( k + 1 ) ( N ( k ) ( p ( k , k − 1 ) ) ) ) ) E(p^{(k,k-1)})=E(N^{(K)}(...(N^{(k+1)}(N^{(k)}(p^{(k,k-1)})))) E(p(k,k1))=E(N(K)(...(N(k+1)(N(k)(p(k,k1)))))
因此对于 p ( k , k − 1 ) p^{(k,k-1)} p(k,k1)的梯度,根据复合函数的链式求导,则有:
∂ E ∂ p ( k , k − 1 ) = ∑ i K ∂ E ∂ N i K ( K ) ∑ i K − 1 ∂ N i K ( K ) ) ∂ N i K − 1 ( K − 1 ) ∑ i K − 2 ∂ N i K − 1 ( K − 1 ) ) ∂ N i K − 2 ( K − 2 ) . . . . ∑ i k ∂ N i k ( k ) ) ∂ p ( k , k − 1 ) \dfrac{\partial E}{\partial p^{(k,k-1)}} =\sum\limits_{i_K}\dfrac{\partial E}{\partial N^{(K)}_{i_K}} \sum\limits_{i_{K-1}}\dfrac{\partial N^{(K)}_{i_K})}{\partial N^{(K-1)}_{i_{K-1}}} \sum\limits_{i_{K-2}}\dfrac{\partial N^{(K-1)}_{i_{K-1}})}{\partial N^{(K-2)}_{i_{K-2}}} ....\sum\limits_{i_{k}}\dfrac{\partial N^{(k)}_{i_k})}{\partial p^{(k,k-1)}} p(k,k1)E=iKNiK(K)EiK1NiK1(K1)NiK(K))iK2NiK2(K2)NiK1(K1))....ikp(k,k1)Nik(k))

三、BP梯度公式解读

看着头很晕,但粗略可以看出,它分为三块:
BP神经网络梯度公式解读

  1. 先由误差函数求出最后一层的节点梯度
  2. 不断地求后一层节点对前一层的节点梯度,直到所要求的参数所在的节点
  3. 最后求出节点对参数的梯度就可以

可以看出,整个梯度的计算过程由误差函数开始,不断地后馈到前一层节点,最后传播到参数上
而这种后馈的特性,给求解梯度带来了非常大的便利性,它的计算过程如下:

  • 先算出最后一层节点的梯度,再后馈式逐层传播到每一层的节点
  • 每当算出某层节点的梯度时,就马上计算当层的参数,如此迭代就可以

相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/999064
推荐阅读
  

闽ICP备14008679号