赞
踩
pytorch多卡相应内容学习总结,本着勤能补拙的态度,希望能够更好地提升自我能力。
CPU
查询# 查看CPU信息
cat /proc/cpuinfo | grep "physical id" | uniq | wc -l #查看CPU个数
cat /proc/cpuinfo | grep "cpu cores" | uniq #查看CPU核数
cat /proc/cpuinfo | grep 'model name' |uniq #查看CPU型号
GPU
查询# 查看GPU信息
sudo dpkg --list | grep nvidia-* # 查看驱动版本
lshw -c video #查看显卡型号
$ lspci | grep -i nvidia # 可以查询所有nvidia显卡
$ lspci -v -s [显卡编号] # 可以查看显卡具体属性
$ nvidia-smi # 可以查看显卡的显存利用率
$ cat /etc/issue # 查看Linux发布版本号
$ lsb_release -a # 查看Linux发布版本号
$ uname -sr # 查看内核版本号
$ uname -a # 查看内核版本号
lspci
是一种实用程序,用于在系统中显示有关pci总线的信息以及连接到它们的设备。
CUDA
版本nvidia-smi # 右上角CUDA Version,但可能不准确,推荐使用下面命令
nvcc -V
以nvcc -V
查询为主
nvidia-smi
nvidia-smi -l 1 # 以每秒刷新一次进行信息,结果为1s一次输出nvidia-smi,不流畅,建议使用吓一条命令
watch -n 1 nvidia-smi # 会在同一位置处1s更新窗口信息
torch.cuda.is_available() # 查看是否有可用GPU
torch.cuda.device_count() # 查看GPU数量
torch.cuda.get_device_capability(device) # 查看指定GPU容量
torch.cuda.get_device_name(device) # 查看指定GPU名称
torch.cuda.empty_cache() # 清空程序占用的GPU资源
torch.cuda.manual_seed(seed) # 设置随机种子
torch.cuda.manual_seed_all(seed) # 设置随机种子
torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息
平时在模型中可以增肌信息输出
s = f'MODEL 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/1019620
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。