当前位置:   article > 正文

一文彻底搞懂Transformer - 注意力机制_transformer注意力机制

transformer注意力机制

Transformer

一、注意力机制

注意力机制背景:朴素的Seq2Seq模型中,由于用Encoder RNN的最后一个神经元的隐状态作为Decoder RNN的初始隐状态,导致Encoder的最后一个隐状态(Context Vector)承载了源句子的所有信息,成为整个模型的“信息”瓶颈。

Seq2Seq

注意力机制目标:帮助模型在处理序列数据时能够关注到输入序列中最重要的部分,允许模型动态地分配不同的权重给输入序列中的不同位置,从而实现对信息的有效筛选和整合。注意力机制就是希望打破长序列信息瓶颈,解决长序列信息丢失问题。

注意力机制目标

Transformer注意力机制:嵌入向量作为输入传递给Transformer的Attention模块时,Attention模块会通过Q、K、V计算注意力权重,从而分析这些向量,使得Embedding向量间能够相互"交流"并根据彼此信息更新自身的值。**

Attention模块的主要作用是确定在给定上下文中哪些嵌入向量与当前任务最相关,并据此更新或调整这些嵌入向量的表示。

Transformer注意力机制

注意力机制案例:在处理包含“model”一词的句子时,它通过分析句子中的其他单词(如“machine learning”或“fashion”),计算这些单词与“model”之间的语义关系权重,并据此更新“model”的嵌入向量,以更准确地反映其在当前上下文中的含义。

二、注意力机制工作流程

注意力机制计算公式:在注意力机制中,Q(Query)、K(Key)、V(Value)通过映射矩阵得到相应的向量,通过计算Q与K的点积相似度并经过softmax归一化得到权重,最后使用这些权重对V进行加权求和得到输出。

注意力机制计算公式

注意力机制计算Q、K、V:对于输入序列的每个单词,通过计算其Query与所有单词Key的点积得到注意力分数,经Softmax归一化后得到注意力权重,再用这些权重对Value向量进行加权求和,以得到包含丰富上下文信息的新单词表示。

  • 生成Q、K、V向量:对于输入序列中的每个单词,都会生成对应的Query(查询)、Key(键)和Value(值)向量。这些向量通常是通过将单词的嵌入向量(Embedding Vector)输入到一个线性变换层得到的。

  • 计算Q、K的点积(注意力分数):计算Query向量与序列中所有单词的Key向量之间的点积,得到一个分数。这个分数反映了Query向量与每个Key向量之间的相似度,即每个单词与当前位置单词的关联程度。

  • Softmax函数归一化(注意力权重):这些分数会经过一个Softmax函数进行归一化,得到每个单词的注意力权重。这些权重表示了在理解当前单词时,应该给予序列中其他单词多大的关注。

  • 注意力权重加权求和(加权和向量):这些注意力权重与对应的Value向量进行加权求和,得到一个加权和向量。这个加权和向量会被用作当前单词的新表示,包含了更丰富的上下文信息。

三、3种注意力机制_

Transformer注意力层:在Transformer架构中,有3种不同的注意力层:Self Attention自注意力、Cross Attention 交叉注意力、Causal Attention因果注意力。

Transformer注意力层

编码器中的自注意力层:在自注意力层中,所有的键、值和查询都来自同一个地方,即编码器前一层的输出。编码器中的每个位置都可以关注编码器前一层中的所有位置。

编码器输入序列通过Multi-Head Self Attention(多头自注意力)计算注意力权重。

编码器的Self Attention

解码器中的交叉注意力层:查询来自前一层解码器,而记忆键和值则来自编码器的输出。这使得解码器中的每个位置都能关注输入序列中的所有位置。

编码器-解码器两个序列通过Multi-Head Cross Attention(多头交叉注意力)进行注意力转移。

编码器-解码器的Cross Attention

解码器中的因果自注意力层:允许解码器中的每个位置关注解码器中包括该位置在内的所有位置。这时需要防止解码器中的信息向左流动,以保持自回归属性,通过将softmax输入中对应非法连接的所有值掩盖掉(设为-∞)来实现这一点。

解码器的单个序列通过Multi-Head Causal Self Attention(多头因果自注意力)进行注意力计算。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/1020536
推荐阅读
相关标签
  

闽ICP备14008679号