赞
踩
在本文中,探讨将Java随机数算法优化为高吞吐量和低延迟的各种技巧。技巧包括更有效的对象分配,更有效的内存访问,消除不必要的间接访问以及机械同情。(对于分布式环境的抢拍很重要)
Java 7引入了,ThreadLocalRandom以在竞争激烈的环境中提高随机数生成的吞吐量。
背后的原理ThreadLocalRandom很简单:Random每个线程都维护自己的版本,而不是共享一个全局实例Random。反过来,这减少了争用,从而提高了吞吐量。
由于这是一个简单的想法,因此我们应该能够袖手旁观,并ThreadLocalRandom以类似的性能实现类似的功能,对吗?
让我们来看看。
第一次尝试
在我们的第一次尝试中,我们将使用简单的方法ThreadLocal:
// A few annotations
public class RandomBenchmark {
private final Random random = new Random();
private final ThreadLocal simpleThreadLocal = ThreadLocal.withInitial(Random::new);
@Benchmark
@BenchmarkMode(Throughput)
public int regularRandom() {
return random.nextInt();
}
@Benchmark
@BenchmarkMode(Throughput)
public int simpleThreadLocal() {
return simpleThreadLocal.get().nextInt();
}
@Benchmark
@BenchmarkMode(Throughput)
public int builtinThreadLocal() {
return ThreadLocalRandom.current().nextInt();
}
// omitted
}
在此基准测试中,我们正在比较Random,我们自己简单的ThreadLocal和内置的ThreadLocalRandom:
Benchmark Mode Cnt Score Error Units
RandomBenchmark.builtinThreadLocal thrpt 40 1023676193.004 ± 26617584.814 ops/s
RandomBenchmark.regularRandom thrpt 40 7487301.035 ± 244268.309 ops/s
RandomBenchmark.simpleThreadLocal thrpt 40 382674281.696 ± 13197821.344 ops/s
ThreadLocalRandom生成每秒约1十亿随机数。
线性同余法
迄今为止,当今使用最广泛的随机数生成器是DH Lehmer在1949年推出的线性同余伪随机数生成器。
(具体算法见原文),Java实现:
protected int next(int bits) {
long oldseed, nextseed;
AtomicLong seed = this.seed;
do {
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
} while (!seed.compareAndSet(oldseed, nextseed));
return (int)(nextseed >>> (48 - bits));
}
由于多个线程可以潜在地同时更新值seed,因此我们需要某种同步来协调并发访问。在这里,Java 在原子的帮助下使用了无锁方法。
基本上,每个线程都会尝试通过原子地将种子值更改为一个新值compareAndSet。如果线程无法执行此操作,它将重试相同的过程,直到可以成功提交更新。
当争用较高时,CAS失败的次数会增加。这是Random并发环境中性能低下的主要原因。
没有更多的CAS
在基于ThreadLocal的实现中,seed值限于每个线程。因此,由于没有共享的可变状态,因此我们不需要原子或任何其他形式的同步:
public class MyThreadLocalRandom extends Random {
// omitted
private static final ThreadLocal threadLocal =
ThreadLocal.withInitial(MyThreadLocalRandom::new);
private MyThreadLocalRandom() {}
public static MyThreadLocalRandom current() {
return threadLocal.get();
}
@Override
protected int next(int bits) {
seed = (seed * multiplier + addend) & mask;
return (int) (seed >>> (48 - bits));
}
}
如果我们再次运行相同的基准测试:
Benchmark Mode Cnt Score Error Units RandomBenchmark.builtinThreadLocal thrpt 40 1023676193.004 ± 26617584.814 ops/s RandomBenchmark.lockFreeThreadLocal thrpt 40 695217843.076 ± 17455041.160 ops/s RandomBenchmark.regularRandom thrpt 40 7487301.035 ± 244268.309 ops/s RandomBenchmark.simpleThreadLocal thrpt 40 382674281.696 ± 13197821.344 ops/s
MyThreadLocalRandom的吞吐量几乎是简单ThreadLocal的两倍。
在compareAndSet提供了原子和内存排序保证,我们只是在一个线程上下文限制也不需要。由于这些保证是昂贵且不必要的,因此删除保证会大大提高吞吐量。
但是,我们仍然落后于内置功能ThreadLocalRandom!
删除间接
事实证明,每个线程都不需要自己的单独且完整的副本Random。它只需要最新seed值即可。
从Java 8开始,这些值已添加到Thread类本身:
/** The current seed for a ThreadLocalRandom */@jdk.internal.vm.annotation.Contended("tlr")
long threadLocalRandomSeed;/** Probe hash value; nonzero if threadLocalRandomSeed initialized */@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomProbe;/** Secondary seed isolated from public ThreadLocalRandom sequence */@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomSecondarySeed;
MyThreadLocalRandom每个线程实例都在threadLocalRandomSeed变量中维护其当前值seed。结果,ThreadLocalRandom类成为单例:
/** The common ThreadLocalRandom */static final ThreadLocalRandom instance = new ThreadLocalRandom();
每次我们调用ThreadLocalRandom.current()的时候,它懒初始化threadLocalRandomSeed,然后返回singelton:
public static ThreadLocalRandom current() {
if (U.getInt(Thread.currentThread(), PROBE) == 0)
localInit();
return instance;
}
使用MyThreadLocalRandom,每次对current()factory方法的调用都会转换为ThreadLocal实例的哈希值计算和在基础哈希表中的查找。
相反,使用这种新的Java 8+方法,我们要做的就是直接读取threadLocalRandomSeed值,然后再对其进行更新。
高效的内存访问
为了更新种子值,java.util.concurrent.ThreadLocalRandom需要更改类中的threadLocalRandomSeed状态java.lang.Thread。如果我们设置为state public,那么每个人都可能更新threadLocalRandomSeed,这不是很好。
我们可以使用反射来更新非公开状态,但是仅仅因为我们可以,并不意味着我们应该!
事实证明,ThreadLocalRandom可以使用本机方法Unsafe.putLong有效地更新threadLocalRandomSeed状态:
/**
* The seed increment.
*/private static final long GAMMA = 0x9e3779b97f4a7c15L;
private static final Unsafe U = Unsafe.getUnsafe();
private static final long SEED = U.objectFieldOffset(Thread.class,"threadLocalRandomSeed");
final long nextSeed() {
Thread t;
long r;// read and update per-thread seedU.putLong(t = Thread.currentThread(), SEED, r = U.getLong(t, SEED) + GAMMA);
return r;
}
putLong方法将r值写入相对于当前线程的某个内存地址。内存偏移量已经通过调用另一个本机方法计算得出Unsafe.objectFieldOffset。
与反射相反,所有这些方法都具有本机实现,并且非常有效。
虚假共享False Sharing
CPU高速缓存根据高速缓存行进行工作。即,高速缓存行是CPU高速缓存和主存储器之间的传输单位。
基本上,处理器倾向于将一些其他值与请求的值一起缓存。这种空间局部性优化通常可以提高吞吐量和内存访问延迟。
但是,当两个或多个线程竞争同一条缓存行时,多线程可能会产生适得其反的效果。
为了更好地理解这一点,让我们假设以下变量位于同一缓存行中:
public class Thread implements Runnable {
private final long tid;
long threadLocalRandomSeed;
int threadLocalRandomProbe;
int threadLocalRandomSecondarySeed;
// omitted}
一些线程tid出于某些未知目的而使用or线程ID。现在,如果我们更新threadLocalRandomSeed线程中的值以生成随机数,那么应该不会发生什么不好的事情,对吗?听起来好像没什么大不了的,因为有些线程正在读取tid,而另一个线程则将整个线程写入另一个内存位置。
尽管我们可能会想,但由于所有这些值都在同一缓存行中,因此读取线程将遇到缓存未命中。编写器需要刷新其存储缓冲区。这种现象称为错误共享False Sharing,会给我们的多线程应用程序带来性能下降。
为了避免错误的共享问题,我们可以在有争议的值周围添加一些填充。这样,每个竞争激烈的值将驻留在自己的缓存行中:
public class Thread implements Runnable {
private final long tid;
private long p11, p12, p13, p14, p15, p16, p17 = 0; // one 64 bit long + 7 more => 64 Byteslong threadLocalRandomSeed;
private long p21, p22, p23, p24, p25, p26, p27 = 0;
int threadLocalRandomProbe;
private long p31, p32, p33, p34, p35, p36, p37 = 0;
int threadLocalRandomSecondarySeed;
private long p41, p42, p43, p44, p45, p46, p47 = 0;// omitted}
在大多数现代处理器中,缓存行大小通常为64或128字节。在我的机器上,它是64个字节,因此long在tid声明之后,我又添加了7个哑数值。
通常,这些threadLocal*变量将在同一线程中更新。因此,最好隔离一下tid:
public class Thread implements Runnable {
private final long tid;
private long p11, p12, p13, p14, p15, p16, p17 = 0;
long threadLocalRandomSeed;
int threadLocalRandomProbe;
int threadLocalRandomSecondarySeed;
// omitted}
读取器线程不会遇到高速缓存未命中的情况,而写入器则不需要立即清除其存储缓冲区,因为这些局部变量不是volatile。
竞争注释
jdk.internal.vm.annotation.Contended注解(如果你是在Java8则是sun.misc.Contended)是JVM隔离注释字段,以避免错误共享的提示。因此,以下内容应该更有意义:
/** The current seed for a ThreadLocalRandom */@jdk.internal.vm.annotation.Contended("tlr")
long threadLocalRandomSeed;/** Probe hash value; nonzero if threadLocalRandomSeed initialized */@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomProbe;/** Secondary seed isolated from public ThreadLocalRandom sequence */@jdk.internal.vm.annotation.Contended("tlr")
int threadLocalRandomSecondarySeed;
借助ContendedPaddingWidth调整标记,我们可以控制填充宽度。
threadLocalRandomSecondarySeed是ForkJoinPool或ConcurrentSkipListMap的内部使用的seed。另外,threadLocalRandomProbe表示当前线程是否已初始化其seed。
在本文中,我们探讨了将RNG优化为高吞吐量和低延迟的各种技巧。技巧包括更有效的对象分配,更有效的内存访问,消除不必要的间接访问以及机械同情。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。