赞
踩
目录
前面的所有篇章都是基于PC端的延迟渲染管线阐述UE的渲染体系的,特别是剖析虚幻渲染体系(04)- 延迟渲染管线详尽地阐述了在PC端的延迟渲染管线的流程和步骤。
此篇只要针对UE的移动端的渲染管线进行阐述,最终还会对比移动和和PC端的渲染差异,以及特殊的优化措施。本篇主要阐述UE渲染体系的以下内容:
特别要指出的是,本篇分析的UE源码升级到了4.27.1,需要同步看源码的同学注意更新了。
如果要在PC的UE编辑器开启移动端渲染管线,可以选择如下所示的菜单:
等待Shader编译完成,UE编辑器的视口内便是移动端的预览效果。
相比PC桌面平台,移动端在尺寸、电量、硬件性能等诸多方面都存在显著的差异,具体表现在:
更小的尺寸。移动端的便携性就要求整机设备必须轻巧,可置于掌中或口袋内,所以整机只能限制在非常小的体积之内。
有限的能量和功率。受限于电池存储技术,目前的主流锂电池普通在1万毫安,但移动设备的分辨率、画质却越来越高,为了满足足够长的续航和散热限制,必须严格控制移动设备的整机功率,通常在5w以内。
散热方式受限。PC设备通常可以安装散热风扇、甚至水冷系统,而移动设备不具备这些主动散热方式,只能靠热传导散热。如果散热不当,CPU和GPU都会主动降频,以非常有限的性能运行,以免设备元器件因过热而损毁。
有限的硬件性能。移动设备的各类元件(CPU、带宽、内存、GPU等)的性能都只是PC设备的数十分之一。
2018年,主流PC设备(NV GV100-400-A1 Titan V)和主流移动设备(Samsung Exynos 9 8895)的性能对比图。移动设备的很多硬件性能只是PC设备的几十分之一,但分辨率却接近PC的一半,更加突显了移动设备的挑战和窘境。
到了2020年,主流的移动设备性能如下所示:
特殊的硬件架构。如CPU和GPU共享内存存储设备,被称为耦合式架构,还有GPU的TB(D)R架构,目的都是为了在低功耗内完成尽可能多的操作。
PC设备的解耦硬件架构和移动设备的耦合式硬件架构对比图。
除此之外,不同于PC端的CPU和GPU纯粹地追求计算性能,衡量移动端的性能有三个指标:性能(Performance)、能量(Power)、面积(Area),俗称PPA。(下图)
衡量移动设备的三个基本参数:Performance、Area、Power,其中Compute Density(计算密度)涉及性能和面积,能耗比涉及性能和能力消耗,越大越好。
与移动设备一起崛起的还有XR设备,它是移动设备的一个重要发展分支。目前存在着各种不同大小、功能、应用场景的XR设备:
各种形式的XR设备。
随着近来元宇宙(Metaverse)的爆火,以及FaceBook改名为Meta,加之Apple、MicroSoft、NVidia、Google等科技巨头都在加紧布局面向未来的沉浸式体验,XR设备作为能够最接近元宇宙畅想的载体和入口,自然成为一条未来非常有潜力能够出现巨无霸的全新赛道。
本章阐述一下UE4.27在移动端的渲染特性。
UE在移动端支持以下图形API:
Feature Level | 说明 |
---|---|
OpenGL ES 3.1 | 安卓系统的默认特性等级,可以在工程设置(Project Settings > Platforms > Android Material Quality - ES31)配置具体的材质参数。 |
Android Vulkan | 可用于某些特定Android设备的高端渲染器,支持Vulkan 1.2 API,轻量级设计理念的Vulkan,多数情况下会比OpenGL更高效。 |
Metal 2.0 | 专用于iOS设备的特性等级。可以在Project Settings > Platforms > iOS Material Quality配置材质参数。 |
在目前的主流安卓设备,使用Vulkan能获得更好的性能,原因在于Vulkan轻量级的设计理念,使得UE等应用程序能够更加精准地执行优化。下面是Vulkan和OpenGL的对照表:
Vulkan | OpenGL |
---|---|
基于对象的状态,没有全局状态。 | 单一的全局状态机。 |
所有的状态概念都放置到命令缓冲区中。 | 状态被绑定到单个上下文。 |
可以多线程编码。 | 渲染操作只能被顺序执行。 |
可以精确、显式地操控GPU的内存和同步。 | GPU的内存和同步细节通常被驱动程序隐藏起来。 |
驱动程序没有运行时错误检测,但存在针对开发人员的验证层。 | 广泛的运行时错误检测。 |
如果在Windows平台,UE编辑器也可以启动OpenGL、Vulkan、Metal的模拟器,以便在编辑器时预览效果,但可能跟实际的运行设备的画面有差异,不可完全依赖此功能。
开启Vulkan前需要在工程中配置一些参数,具体参看官方文档Android Vulkan Mobile Renderer。
另外,UE早前几个版本就移除了windows下的OpenGL支持,虽然目前UE编辑器还存在OpenGL的模拟选项,但实际上底层是用D3D渲染的。
UE的Deferred Shading(延迟着色)是在4.26才加入的功能,使得开发者能够在移动端实现较复杂的光影效果,诸如高质量反射、多动态光照、贴花、高级光照特性。
上:前向渲染;下:延迟渲染。
如果要在移动端开启延迟渲染,需要在工程配置目录下的DefaultEngine.ini添加r.Mobile.ShadingPath=1
字段,然后重启编辑器。
Ground Truth Ambient Occlusion (GTAO)是接近现实世界的环境遮挡技术,是阴影的一种补偿,能够遮蔽一部分非直接光照,从而获得良好的软阴影效果。
开启了GTAO的效果,注意机器人靠近墙面时,会在墙面留下具有渐变的软阴影效果。
为了开启GTAO,需要勾选以下所示的选项:
此外,GTAO依赖Mobile HDR的选项,为了在对应目标设备开启,还需要在[Platform]Scalability.ini的配置中添加r.Mobile.AmbientOcclusionQuality
字段,并且值需要大于0,否则GTAO将被禁用。
值得注意的是,GTAO在Mali设备上存在性能问题,因为它们的最大Compute Shader线程数量少于1024个。
UE在移动端实现的光源特性有:
UE移动端支持的动态光源的类型、数量、阴影等信息如下:
光源类型 | 最大数量 | 阴影 | 描述 |
---|---|---|---|
平行光 | 1 | CSM | CSM默认是2级,最多支持4级。 |
点光源 | 4 | 不支持 | 点光源阴影需要立方体阴影图,而单Pass渲染立方体阴影(OnePassPointLightShadow)的技术需要GS(SM5才有)才支持。 |
聚光灯 | 4 | 支持 | 默认禁用,需要在工程中开启。 |
区域光 | 0 | 不支持 | 目前不支持动态区域光照效果。 |
动态的聚光灯需要在工程配置中显式开启:
在移动BasePass的像素着色器中,聚光灯阴影图与CSM共享相同的纹理采样器,并且聚光灯阴影和CSM使用相同的阴影图图集。CSM能够保证有足够的空间,而聚光灯将按阴影分辨率排序。
默认情况下,可见阴影的最大数量被限制为8个,但可以通过改变r.Mobile.MaxVisibleMovableSpotLightsShadow
的值来改变上限值。聚光灯阴影的分辨率是基于屏幕大小和r.Shadow.TexelsPerPixelSpotlight
。
在前向渲染路径中,局部光源(点光源和聚光灯)的总数不能超过4个。
移动端还支持一种特殊的阴影模式,那就是调制阴影(Modulated Shadows),只能用于固定(Stationary)的平行光。开启了调制阴影的效果图如下:
调制阴影还支持改变阴影颜色和混合比例:
左:动态阴影;右:调制阴影。
移动端的阴影同样支持自阴影、阴影质量等级(r.shadowquality)、深度偏移等参数的设置。
此外,移动端默认使用了GGX的高光反射,如果想切换到传统的高光着色模型,可以在以下配置里修改:
UE针对移动端做了一个优化版的SSR,被称为Pixel Projected Reflection(PPR),也是复用屏幕空间像素的核心思想。
PPR效果图。
为了开启PPR效果,需要满足以下条件:
开启MobileHDR选项。
r.Mobile.PixelProjectedReflectionQuality
的值大于0。
设置Project Settings > Mobile and set the Planar Reflection Mode成正确的模式:
Planar Reflection Mode有3个选项:
默认只有高端移动设备才会在[Project]Scalability.ini开启r.Mobile.PixelProjectedReflectionQuality
。
PC端的网格绘制管线已经支持了网格的自动化实例和合并绘制,这个特性可以极大提升渲染性能。4.27已经在移动端支持了这一特性。
若想开启,则需要打开工程配置目录下的DefaultEngine.ini,添加以下字段:
- r.Mobile.SupportGPUScene=1
- r.Mobile.UseGPUSceneTexture=1
重启编辑器,等待Shader编译完即可预览效果。
由于需要GPUSceneTexture支持,而Mali设备的Uniform Buffer最大只有64kb,以致无法支持足够大的空间,所以,Mali设备会使用纹理而非缓冲区来存储GPUScene数据。
但也存在一些限制:
移动设备上的自动实例化主要有利于CPU密集型项目,而不是GPU密集型项目。虽然启用自动实例化不太可能会对GPU密集型的项目造成损害,但不太可能看到使用它带来的显著性能改进。
如果一款游戏或应用需要大量内存,那么关闭r.Mobile.UseGPUSceneTexture
并使用缓冲区可能会更有好处,因为它无法在Mali设备上正常运行。
也可以针对Mali设备关闭
r.Mobile.UseGPUSceneTexture
,而其它GPU厂商的设备正常使用。
自动实例化的有效性很大程度上取决于项目的确切规范和定位,建议创建一个启用了自动实例化的构建,并对其进行概要分析,以确定是否会看到实质性的性能提升。
由于移动设备存在更慢的依赖纹理读取(dependent texture read)、有限的硬件特性、特殊的硬件架构、额外的渲染目标解析、有限的带宽等限制性因素,故而后处理在移动设备上执行起来会比较耗性能,有些极端情况会卡住渲染管线。
尽管如此,在某些画质要求高的游戏或应用,依然非常依赖后处理的强劲表现力,为高品质迈上几个台阶。UE不会限制开发者使用后处理。
为了开启后处理,必须先开启MobileHDR选项:
开启后处理之后,就可以在后处理体积(Post Process Volume)设置各种后处理效果。
在移动端可以支持的后处理有Mobile Tonemapper、Color Grading、Lens、Bloom、Dirt Mask、Auto Exposure、Lens Flares、Depth of Field等等。
为了获得更好的性能,官方给出的建议是在移动端只开启Bloom和TAA。
移动端支持反射捕捉器组件(Reflection Capture Component)的压缩,可以减少Reflection Capture运行时的内存和带宽,提升渲染效率。需要在工程配置中开启:
开启之后,默认使用ETC2进行压缩。另外,也可以针对每个Reflection Capture Component进行调整:
移动平台上的材质(特性级别Open ES 3.1)使用与其他平台相同的基于节点的创建过程,并且绝大多数节点在移动端都支持。
移动平台支持的材质属性有:BaseColor、Roughness、Metallic、Specular、Normal、Emissive、Refraction,但不支持Scene Color表达式、Tessellation输入、次表面散射着色模型。
移动平台支持的材质存在一些限制:
材质属性面板存在一些针对移动端的特殊选项:
这些属性的说明如下:
Mobile Separate Translucency:是否在移动端开启单独的半透明渲染纹理。
Use Full Precision:是否使用全精度,如果否,可以减少带宽占用和能耗,提升性能,但可能会出现远处物体的瑕疵:
左:全精度材质;右:半精度材质,远处的太阳出现了瑕疵。
Use Lightmap Directionality:是否开启光照图的方向性,若勾选,会考虑光照图的方向和像素法线,但会提升性能消耗。
Use Alpha to Coverage:是否为Masked材质开启MSAA抗锯齿,若勾选,会开启MSAA。
Fully Rough:是否完全粗糙,如果勾选,将极大提升此材质的渲染效率。
此外,移动端支持的网格类型有:
除上述类型以外的其它都不被支持。其它限制还有:
FMobileSceneRenderer继承自FSceneRenderer,它负责移动端的场景渲染流程,而PC端是同样继承自FSceneRenderer的FDeferredShadingSceneRenderer。它们的继承关系图如下:
FSceneRenderer
FMobileSceneRenderer
FDeferredShadingSceneRenderer
前述多篇文章已经提及了FDeferredShadingSceneRenderer,它的渲染流程尤为复杂,包含了复杂的光影和渲染步骤。相比之下,FMobileSceneRenderer的逻辑和步骤会简单许多,下面是RenderDoc的截帧:
以上主要包含了InitViews、ShadowDepths、PrePass、BasePass、OcclusionTest、ShadowProjectionOnOpaque、Translucency、PostProcessing等步骤。其中这些步骤在PC端都是存在的,但实现过程可能会有所不同。见后续章节剖析。
移动端的场景渲染器的主流程也发生在FMobileSceneRenderer::Render
中,代码和解析如下:
- // Engine\Source\Runtime\Renderer\Private\MobileShadingRenderer.cpp
-
- void FMobileSceneRenderer::Render(FRHICommandListImmediate& RHICmdList)
- {
- // 更新图元场景信息。
- Scene->UpdateAllPrimitiveSceneInfos(RHICmdList);
-
- // 准备视图的渲染区域.
- PrepareViewRectsForRendering(RHICmdList);
-
- // 准备天空大气的数据
- if (ShouldRenderSkyAtmosphere(Scene, ViewFamily.EngineShowFlags))
- {
- for (int32 LightIndex = 0; LightIndex < NUM_ATMOSPHERE_LIGHTS; ++LightIndex)
- {
- if (Scene->AtmosphereLights[LightIndex])
- {
- PrepareSunLightProxy(*Scene->GetSkyAtmosphereSceneInfo(), LightIndex, *Scene->AtmosphereLights[LightIndex]);
- }
- }
- }
- else
- {
- Scene->ResetAtmosphereLightsProperties();
- }
-
- if(!ViewFamily.EngineShowFlags.Rendering)
- {
- return;
- }
-
- // 等待遮挡剔除测试.
- WaitOcclusionTests(RHICmdList);
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- // 初始化视图, 查找可见图元, 准备渲染所需的RT和缓冲区等数据.
- InitViews(RHICmdList);
-
- if (GRHINeedsExtraDeletionLatency || !GRHICommandList.Bypass())
- {
- QUICK_SCOPE_CYCLE_COUNTER(STAT_FMobileSceneRenderer_PostInitViewsFlushDel);
-
- // 可能会暂停遮挡查询,所以最好在等待时让RHI线程和GPU工作. 此外,当执行RHI线程时,这是唯一将处理挂起删除的位置.
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::FlushRHIThreadFlushResources);
- }
-
- GEngine->GetPreRenderDelegate().Broadcast();
-
- // 在渲染开始前提交全局动态缓冲.
- DynamicIndexBuffer.Commit();
- DynamicVertexBuffer.Commit();
- DynamicReadBuffer.Commit();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_SceneSim));
-
- if (ViewFamily.bLateLatchingEnabled)
- {
- BeginLateLatching(RHICmdList);
- }
-
- FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(RHICmdList);
-
- // 处理虚拟纹理
- if (bUseVirtualTexturing)
- {
- SCOPED_GPU_STAT(RHICmdList, VirtualTextureUpdate);
-
- FVirtualTextureSystem::Get().Update(RHICmdList, FeatureLevel, Scene);
-
- // Clear virtual texture feedback to default value
- FUnorderedAccessViewRHIRef FeedbackUAV = SceneContext.GetVirtualTextureFeedbackUAV();
- RHICmdList.Transition(FRHITransitionInfo(FeedbackUAV, ERHIAccess::SRVMask, ERHIAccess::UAVMask));
- RHICmdList.ClearUAVUint(FeedbackUAV, FUintVector4(~0u, ~0u, ~0u, ~0u));
- RHICmdList.Transition(FRHITransitionInfo(FeedbackUAV, ERHIAccess::UAVMask, ERHIAccess::UAVMask));
- RHICmdList.BeginUAVOverlap(FeedbackUAV);
- }
-
- // 已排序的光源信息.
- FSortedLightSetSceneInfo SortedLightSet;
-
- // 延迟渲染.
- if (bDeferredShading)
- {
- // 收集和排序光源.
- GatherAndSortLights(SortedLightSet);
-
- int32 NumReflectionCaptures = Views[0].NumBoxReflectionCaptures + Views[0].NumSphereReflectionCaptures;
- bool bCullLightsToGrid = (NumReflectionCaptures > 0 || GMobileUseClusteredDeferredShading != 0);
- FRDGBuilder GraphBuilder(RHICmdList);
- // 计算光源格子.
- ComputeLightGrid(GraphBuilder, bCullLightsToGrid, SortedLightSet);
- GraphBuilder.Execute();
- }
-
- // 生成天空/大气LUT.
- const bool bShouldRenderSkyAtmosphere = ShouldRenderSkyAtmosphere(Scene, ViewFamily.EngineShowFlags);
- if (bShouldRenderSkyAtmosphere)
- {
- FRDGBuilder GraphBuilder(RHICmdList);
- RenderSkyAtmosphereLookUpTables(GraphBuilder);
- GraphBuilder.Execute();
- }
-
- // 通知特效系统场景准备渲染.
- if (FXSystem && ViewFamily.EngineShowFlags.Particles)
- {
- FXSystem->PreRender(RHICmdList, NULL, !Views[0].bIsPlanarReflection);
- if (FGPUSortManager* GPUSortManager = FXSystem->GetGPUSortManager())
- {
- GPUSortManager->OnPreRender(RHICmdList);
- }
- }
- // 轮询遮挡剔除请求.
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Shadows));
-
- // 渲染阴影.
- RenderShadowDepthMaps(RHICmdList);
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- // 收集视图列表.
- TArray<const FViewInfo*> ViewList;
- for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
- {
- ViewList.Add(&Views[ViewIndex]);
- }
-
- // 渲染自定义深度.
- if (bShouldRenderCustomDepth)
- {
- FRDGBuilder GraphBuilder(RHICmdList);
- FSceneTextureShaderParameters SceneTextures = CreateSceneTextureShaderParameters(GraphBuilder, Views[0].GetFeatureLevel(), ESceneTextureSetupMode::None);
- RenderCustomDepthPass(GraphBuilder, SceneTextures);
- GraphBuilder.Execute();
- }
-
- // 渲染深度PrePass.
- if (bIsFullPrepassEnabled)
- {
- // SDF和AO需要完整的PrePass深度.
-
- FRHIRenderPassInfo DepthPrePassRenderPassInfo(
- SceneContext.GetSceneDepthSurface(),
- EDepthStencilTargetActions::ClearDepthStencil_StoreDepthStencil);
-
- DepthPrePassRenderPassInfo.NumOcclusionQueries = ComputeNumOcclusionQueriesToBatch();
- DepthPrePassRenderPassInfo.bOcclusionQueries = DepthPrePassRenderPassInfo.NumOcclusionQueries != 0;
-
- RHICmdList.BeginRenderPass(DepthPrePassRenderPassInfo, TEXT("DepthPrepass"));
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLM_MobilePrePass));
-
- // 渲染完整的深度PrePass.
- RenderPrePass(RHICmdList);
-
- // 提交遮挡剔除.
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Occlusion));
- RenderOcclusion(RHICmdList);
-
- RHICmdList.EndRenderPass();
-
- // SDF阴影
- if (bRequiresDistanceFieldShadowingPass)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderSDFShadowing);
- RenderSDFShadowing(RHICmdList);
- }
-
- // HZB.
- if (bShouldRenderHZB)
- {
- RenderHZB(RHICmdList, SceneContext.SceneDepthZ);
- }
-
- // AO.
- if (bRequiresAmbientOcclusionPass)
- {
- RenderAmbientOcclusion(RHICmdList, SceneContext.SceneDepthZ);
- }
- }
-
- FRHITexture* SceneColor = nullptr;
-
- // 延迟渲染.
- if (bDeferredShading)
- {
- SceneColor = RenderDeferred(RHICmdList, ViewList, SortedLightSet);
- }
- // 前向渲染.
- else
- {
- SceneColor = RenderForward(RHICmdList, ViewList);
- }
-
- // 渲染速度缓冲.
- if (bShouldRenderVelocities)
- {
- FRDGBuilder GraphBuilder(RHICmdList);
-
- FRDGTextureMSAA SceneDepthTexture = RegisterExternalTextureMSAA(GraphBuilder, SceneContext.SceneDepthZ);
- FRDGTextureRef VelocityTexture = TryRegisterExternalTexture(GraphBuilder, SceneContext.SceneVelocity);
-
- if (VelocityTexture != nullptr)
- {
- AddClearRenderTargetPass(GraphBuilder, VelocityTexture);
- }
-
- // 渲染可移动物体的速度缓冲.
- AddSetCurrentStatPass(GraphBuilder, GET_STATID(STAT_CLMM_Velocity));
- RenderVelocities(GraphBuilder, SceneDepthTexture.Resolve, VelocityTexture, FSceneTextureShaderParameters(), EVelocityPass::Opaque, false);
- AddSetCurrentStatPass(GraphBuilder, GET_STATID(STAT_CLMM_AfterVelocity));
-
- // 渲染透明物体的速度缓冲.
- AddSetCurrentStatPass(GraphBuilder, GET_STATID(STAT_CLMM_TranslucentVelocity));
- RenderVelocities(GraphBuilder, SceneDepthTexture.Resolve, VelocityTexture, GetSceneTextureShaderParameters(CreateMobileSceneTextureUniformBuffer(GraphBuilder, EMobileSceneTextureSetupMode::SceneColor)), EVelocityPass::Translucent, false);
-
- GraphBuilder.Execute();
- }
-
- // 处理场景渲染后的逻辑.
- {
- FRendererModule& RendererModule = static_cast<FRendererModule&>(GetRendererModule());
- FRDGBuilder GraphBuilder(RHICmdList);
- RendererModule.RenderPostOpaqueExtensions(GraphBuilder, Views, SceneContext);
-
- if (FXSystem && Views.IsValidIndex(0))
- {
- AddUntrackedAccessPass(GraphBuilder, [this](FRHICommandListImmediate& RHICmdList)
- {
- check(RHICmdList.IsOutsideRenderPass());
-
- FXSystem->PostRenderOpaque(
- RHICmdList,
- Views[0].ViewUniformBuffer,
- nullptr,
- nullptr,
- Views[0].AllowGPUParticleUpdate()
- );
- if (FGPUSortManager* GPUSortManager = FXSystem->GetGPUSortManager())
- {
- GPUSortManager->OnPostRenderOpaque(RHICmdList);
- }
- });
- }
- GraphBuilder.Execute();
- }
-
- // 刷新/提交命令缓冲.
- if (bSubmitOffscreenRendering)
- {
- RHICmdList.SubmitCommandsHint();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
-
- // 转换场景颜色成SRV, 以供后续步骤读取.
- if (!bGammaSpace || bRenderToSceneColor)
- {
- RHICmdList.Transition(FRHITransitionInfo(SceneColor, ERHIAccess::Unknown, ERHIAccess::SRVMask));
- }
-
- if (bDeferredShading)
- {
- // 释放场景渲染目标上的原始引用.
- SceneContext.AdjustGBufferRefCount(RHICmdList, -1);
- }
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Post));
-
- // 处理虚拟纹理.
- if (bUseVirtualTexturing)
- {
- SCOPED_GPU_STAT(RHICmdList, VirtualTextureUpdate);
-
- // No pass after this should make VT page requests
- RHICmdList.EndUAVOverlap(SceneContext.VirtualTextureFeedbackUAV);
- RHICmdList.Transition(FRHITransitionInfo(SceneContext.VirtualTextureFeedbackUAV, ERHIAccess::UAVMask, ERHIAccess::SRVMask));
-
- TArray<FIntRect, TInlineAllocator<4>> ViewRects;
- ViewRects.AddUninitialized(Views.Num());
- for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
- {
- ViewRects[ViewIndex] = Views[ViewIndex].ViewRect;
- }
-
- FVirtualTextureFeedbackBufferDesc Desc;
- Desc.Init2D(SceneContext.GetBufferSizeXY(), ViewRects, SceneContext.GetVirtualTextureFeedbackScale());
-
- SubmitVirtualTextureFeedbackBuffer(RHICmdList, SceneContext.VirtualTextureFeedback, Desc);
- }
-
- FMemMark Mark(FMemStack::Get());
- FRDGBuilder GraphBuilder(RHICmdList);
-
- FRDGTextureRef ViewFamilyTexture = TryCreateViewFamilyTexture(GraphBuilder, ViewFamily);
-
- // 解析场景
- if (ViewFamily.bResolveScene)
- {
- if (!bGammaSpace || bRenderToSceneColor)
- {
- // 完成每个视图的渲染或完整的立体声缓冲区(如果启用)
- {
- RDG_EVENT_SCOPE(GraphBuilder, "PostProcessing");
- SCOPE_CYCLE_COUNTER(STAT_FinishRenderViewTargetTime);
-
- TArray<TRDGUniformBufferRef<FMobileSceneTextureUniformParameters>, TInlineAllocator<1, SceneRenderingAllocator>> MobileSceneTexturesPerView;
- MobileSceneTexturesPerView.SetNumZeroed(Views.Num());
-
- const auto SetupMobileSceneTexturesPerView = [&]()
- {
- for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ++ViewIndex)
- {
- EMobileSceneTextureSetupMode SetupMode = EMobileSceneTextureSetupMode::SceneColor;
- if (Views[ViewIndex].bCustomDepthStencilValid)
- {
- SetupMode |= EMobileSceneTextureSetupMode::CustomDepth;
- }
-
- if (bShouldRenderVelocities)
- {
- SetupMode |= EMobileSceneTextureSetupMode::SceneVelocity;
- }
-
- MobileSceneTexturesPerView[ViewIndex] = CreateMobileSceneTextureUniformBuffer(GraphBuilder, SetupMode);
- }
- };
-
- SetupMobileSceneTexturesPerView();
-
- FMobilePostProcessingInputs PostProcessingInputs;
- PostProcessingInputs.ViewFamilyTexture = ViewFamilyTexture;
-
- // 渲染后处理效果.
- for (int32 ViewIndex = 0; ViewIndex < Views.Num(); ViewIndex++)
- {
- RDG_EVENT_SCOPE_CONDITIONAL(GraphBuilder, Views.Num() > 1, "View%d", ViewIndex);
- PostProcessingInputs.SceneTextures = MobileSceneTexturesPerView[ViewIndex];
- AddMobilePostProcessingPasses(GraphBuilder, Views[ViewIndex], PostProcessingInputs, NumMSAASamples > 1);
- }
- }
- }
- }
-
- GEngine->GetPostRenderDelegate().Broadcast();
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_SceneEnd));
-
- if (bShouldRenderVelocities)
- {
- SceneContext.SceneVelocity.SafeRelease();
- }
-
- if (ViewFamily.bLateLatchingEnabled)
- {
- EndLateLatching(RHICmdList, Views[0]);
- }
-
- RenderFinish(GraphBuilder, ViewFamilyTexture);
- GraphBuilder.Execute();
-
- // 轮询遮挡剔除请求.
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- FRHICommandListExecutor::GetImmediateCommandList().ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
看过剖析虚幻渲染体系(04)- 延迟渲染管线篇章的同学应该都知道,移动端的场景渲染过程精简了很多很多步骤,相当于是PC端场景渲染器的一个子集。当然,为了适应移动端特有的GPU硬件架构,移动端的场景渲染也有区别于PC端的地方。后面会详细剖析。移动端场景的主要步骤和流程如下所示:
No
Yes
No
Yes
No
Yes
UpdateAllPrimitiveSceneInfos
PrepareViewRectsForRendering
InitViews
RenderSkyAtmosphereLookUpTables*
GatherAndSortLights
ComputeLightGrid
RenderShadowDepthMaps
RenderCustomDepthPass*
bDeferredShading2
RenderPrePass
RenderOcclusion
RenderSDFShadowing*
RenderHZB*
RenderAmbientOcclusion*
RenderForward
RenderDeferred
RenderVelocities*
AddMobilePostProcessingPasses*
RenderFinish
关于上面的流程图,有以下几点需要加以说明:
bDeferredShading
和bDeferredShading2
是同一个变量,这里区分开主要是为了防止mermaid
语法绘图错误。UE4.26便加入了移动端的延迟渲染管线,所以上述代码中有前向渲染分支RenderForward
和延迟渲染分支RenderDeferred
,它们返回的都是渲染结果SceneColor。
移动端也支持了图元GPU场景、SDF阴影、AO、天空大气、虚拟纹理、遮挡剔除等渲染特性。
自UE4.26开始,渲染体系广泛地使用了RDG系统,移动端的场景渲染器也不例外。上述代码中总共声明了数个FRDGBuilder实例,用于计算光源格子,以及渲染天空大气LUT、自定义深度、速度缓冲、渲染后置事件、后处理等,它们都是相对独立的功能模块或渲染阶段。
RenderForward
在移动端场景渲染器中负责前向渲染的分支,它的代码和解析如下:
- FRHITexture* FMobileSceneRenderer::RenderForward(FRHICommandListImmediate& RHICmdList, const TArrayView<const FViewInfo*> ViewList)
- {
- const FViewInfo& View = *ViewList[0];
- FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(RHICmdList);
-
- FRHITexture* SceneColor = nullptr;
- FRHITexture* SceneColorResolve = nullptr;
- FRHITexture* SceneDepth = nullptr;
- ERenderTargetActions ColorTargetAction = ERenderTargetActions::Clear_Store;
- EDepthStencilTargetActions DepthTargetAction = EDepthStencilTargetActions::ClearDepthStencil_DontStoreDepthStencil;
-
- // 是否启用移动端MSAA.
- bool bMobileMSAA = NumMSAASamples > 1 && SceneContext.GetSceneColorSurface()->GetNumSamples() > 1;
-
- // 是否启用移动端多试图模式.
- static const auto CVarMobileMultiView = IConsoleManager::Get().FindTConsoleVariableDataInt(TEXT("vr.MobileMultiView"));
- const bool bIsMultiViewApplication = (CVarMobileMultiView && CVarMobileMultiView->GetValueOnAnyThread() != 0);
-
- // gamma空间的渲染分支.
- if (bGammaSpace && !bRenderToSceneColor)
- {
- // 如果开启MSAA, 则从SceneContext获取渲染纹理(包含场景颜色和解析纹理)
- if (bMobileMSAA)
- {
- SceneColor = SceneContext.GetSceneColorSurface();
- SceneColorResolve = ViewFamily.RenderTarget->GetRenderTargetTexture();
- ColorTargetAction = ERenderTargetActions::Clear_Resolve;
- RHICmdList.Transition(FRHITransitionInfo(SceneColorResolve, ERHIAccess::Unknown, ERHIAccess::RTV | ERHIAccess::ResolveDst));
- }
- // 非MSAA,从视图家族获取渲染纹理.
- else
- {
- SceneColor = ViewFamily.RenderTarget->GetRenderTargetTexture();
- RHICmdList.Transition(FRHITransitionInfo(SceneColor, ERHIAccess::Unknown, ERHIAccess::RTV));
- }
- SceneDepth = SceneContext.GetSceneDepthSurface();
- }
- // 线性空间或渲染到场景纹理.
- else
- {
- SceneColor = SceneContext.GetSceneColorSurface();
- if (bMobileMSAA)
- {
- SceneColorResolve = SceneContext.GetSceneColorTexture();
- ColorTargetAction = ERenderTargetActions::Clear_Resolve;
- RHICmdList.Transition(FRHITransitionInfo(SceneColorResolve, ERHIAccess::Unknown, ERHIAccess::RTV | ERHIAccess::ResolveDst));
- }
- else
- {
- SceneColorResolve = nullptr;
- ColorTargetAction = ERenderTargetActions::Clear_Store;
- }
-
- SceneDepth = SceneContext.GetSceneDepthSurface();
-
- if (bRequiresMultiPass)
- {
- // store targets after opaque so translucency render pass can be restarted
- ColorTargetAction = ERenderTargetActions::Clear_Store;
- DepthTargetAction = EDepthStencilTargetActions::ClearDepthStencil_StoreDepthStencil;
- }
-
- if (bKeepDepthContent)
- {
- // store depth if post-processing/capture needs it
- DepthTargetAction = EDepthStencilTargetActions::ClearDepthStencil_StoreDepthStencil;
- }
- }
-
- // prepass的深度纹理状态.
- if (bIsFullPrepassEnabled)
- {
- ERenderTargetActions DepthTarget = MakeRenderTargetActions(ERenderTargetLoadAction::ELoad, GetStoreAction(GetDepthActions(DepthTargetAction)));
- ERenderTargetActions StencilTarget = MakeRenderTargetActions(ERenderTargetLoadAction::ELoad, GetStoreAction(GetStencilActions(DepthTargetAction)));
- DepthTargetAction = MakeDepthStencilTargetActions(DepthTarget, StencilTarget);
- }
-
- FRHITexture* ShadingRateTexture = nullptr;
-
- if (!View.bIsSceneCapture && !View.bIsReflectionCapture)
- {
- TRefCountPtr<IPooledRenderTarget> ShadingRateTarget = GVRSImageManager.GetMobileVariableRateShadingImage(ViewFamily);
- if (ShadingRateTarget.IsValid())
- {
- ShadingRateTexture = ShadingRateTarget->GetRenderTargetItem().ShaderResourceTexture;
- }
- }
-
- // 场景颜色渲染Pass信息.
- FRHIRenderPassInfo SceneColorRenderPassInfo(
- SceneColor,
- ColorTargetAction,
- SceneColorResolve,
- SceneDepth,
- DepthTargetAction,
- nullptr, // we never resolve scene depth on mobile
- ShadingRateTexture,
- VRSRB_Sum,
- FExclusiveDepthStencil::DepthWrite_StencilWrite
- );
- SceneColorRenderPassInfo.SubpassHint = ESubpassHint::DepthReadSubpass;
- if (!bIsFullPrepassEnabled)
- {
- SceneColorRenderPassInfo.NumOcclusionQueries = ComputeNumOcclusionQueriesToBatch();
- SceneColorRenderPassInfo.bOcclusionQueries = SceneColorRenderPassInfo.NumOcclusionQueries != 0;
- }
- // 如果场景颜色不是多视图,但应用程序是,需要渲染为单视图的多视图给着色器.
- SceneColorRenderPassInfo.MultiViewCount = View.bIsMobileMultiViewEnabled ? 2 : (bIsMultiViewApplication ? 1 : 0);
-
- // 开始渲染场景颜色.
- RHICmdList.BeginRenderPass(SceneColorRenderPassInfo, TEXT("SceneColorRendering"));
-
- if (GIsEditor && !View.bIsSceneCapture)
- {
- DrawClearQuad(RHICmdList, Views[0].BackgroundColor);
- }
-
- if (!bIsFullPrepassEnabled)
- {
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLM_MobilePrePass));
- // 渲染深度pre-pass
- RenderPrePass(RHICmdList);
- }
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Opaque));
- // 渲染BasePass: 不透明和masked物体.
- RenderMobileBasePass(RHICmdList, ViewList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- //渲染调试模式.
- #if !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
- if (ViewFamily.UseDebugViewPS())
- {
- // Here we use the base pass depth result to get z culling for opaque and masque.
- // The color needs to be cleared at this point since shader complexity renders in additive.
- DrawClearQuad(RHICmdList, FLinearColor::Black);
- RenderMobileDebugView(RHICmdList, ViewList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
- #endif // !(UE_BUILD_SHIPPING || UE_BUILD_TEST)
-
- const bool bAdrenoOcclusionMode = CVarMobileAdrenoOcclusionMode.GetValueOnRenderThread() != 0;
- if (!bIsFullPrepassEnabled)
- {
- // 遮挡剔除
- if (!bAdrenoOcclusionMode)
- {
- // 提交遮挡剔除
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Occlusion));
- RenderOcclusion(RHICmdList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
- }
-
- // 后置事件, 处理插件渲染.
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(ViewExtensionPostRenderBasePass);
- QUICK_SCOPE_CYCLE_COUNTER(STAT_FMobileSceneRenderer_ViewExtensionPostRenderBasePass);
- for (int32 ViewExt = 0; ViewExt < ViewFamily.ViewExtensions.Num(); ++ViewExt)
- {
- for (int32 ViewIndex = 0; ViewIndex < ViewFamily.Views.Num(); ++ViewIndex)
- {
- ViewFamily.ViewExtensions[ViewExt]->PostRenderBasePass_RenderThread(RHICmdList, Views[ViewIndex]);
- }
- }
- }
-
- // 如果需要渲染透明物体或像素投影的反射, 则需要拆分pass.
- if (bRequiresMultiPass || bRequiresPixelProjectedPlanarRelfectionPass)
- {
- RHICmdList.EndRenderPass();
- }
-
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Translucency));
-
- // 如果需要, 则重新开启透明渲染通道.
- if (bRequiresMultiPass || bRequiresPixelProjectedPlanarRelfectionPass)
- {
- check(RHICmdList.IsOutsideRenderPass());
-
- // 如果当前硬件不支持读写相同的深度缓冲区,则复制场景深度.
- ConditionalResolveSceneDepth(RHICmdList, View);
-
- if (bRequiresPixelProjectedPlanarRelfectionPass)
- {
- const FPlanarReflectionSceneProxy* PlanarReflectionSceneProxy = Scene ? Scene->GetForwardPassGlobalPlanarReflection() : nullptr;
- RenderPixelProjectedReflection(RHICmdList, SceneContext, PlanarReflectionSceneProxy);
-
- FRHITransitionInfo TranslucentRenderPassTransitions[] = {
- FRHITransitionInfo(SceneColor, ERHIAccess::SRVMask, ERHIAccess::RTV),
- FRHITransitionInfo(SceneDepth, ERHIAccess::SRVMask, ERHIAccess::DSVWrite)
- };
- RHICmdList.Transition(MakeArrayView(TranslucentRenderPassTransitions, UE_ARRAY_COUNT(TranslucentRenderPassTransitions)));
- }
-
- DepthTargetAction = EDepthStencilTargetActions::LoadDepthStencil_DontStoreDepthStencil;
- FExclusiveDepthStencil::Type ExclusiveDepthStencil = FExclusiveDepthStencil::DepthRead_StencilRead;
- if (bModulatedShadowsInUse)
- {
- ExclusiveDepthStencil = FExclusiveDepthStencil::DepthRead_StencilWrite;
- }
-
- // 用于移动端像素投影反射的不透明网格必须将深度写入深度RT, 因为只渲染一次网格(如果质量水平低于或等于BestPerformance).
- if (IsMobilePixelProjectedReflectionEnabled(View.GetShaderPlatform())
- && GetMobilePixelProjectedReflectionQuality() == EMobilePixelProjectedReflectionQuality::BestPerformance)
- {
- ExclusiveDepthStencil = FExclusiveDepthStencil::DepthWrite_StencilWrite;
- }
-
- if (bKeepDepthContent && !bMobileMSAA)
- {
- DepthTargetAction = EDepthStencilTargetActions::LoadDepthStencil_StoreDepthStencil;
- }
-
- #if PLATFORM_HOLOLENS
- if (bShouldRenderDepthToTranslucency)
- {
- ExclusiveDepthStencil = FExclusiveDepthStencil::DepthWrite_StencilWrite;
- }
- #endif
-
- // 透明物体渲染Pass.
- FRHIRenderPassInfo TranslucentRenderPassInfo(
- SceneColor,
- SceneColorResolve ? ERenderTargetActions::Load_Resolve : ERenderTargetActions::Load_Store,
- SceneColorResolve,
- SceneDepth,
- DepthTargetAction,
- nullptr,
- ShadingRateTexture,
- VRSRB_Sum,
- ExclusiveDepthStencil
- );
- TranslucentRenderPassInfo.NumOcclusionQueries = 0;
- TranslucentRenderPassInfo.bOcclusionQueries = false;
- TranslucentRenderPassInfo.SubpassHint = ESubpassHint::DepthReadSubpass;
-
- // 开始渲染半透明物体.
- RHICmdList.BeginRenderPass(TranslucentRenderPassInfo, TEXT("SceneColorTranslucencyRendering"));
- }
-
- // 场景深度是只读的,可以获取.
- RHICmdList.NextSubpass();
-
- if (!View.bIsPlanarReflection)
- {
- // 渲染贴花.
- if (ViewFamily.EngineShowFlags.Decals)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderDecals);
- RenderDecals(RHICmdList);
- }
-
- // 渲染调制阴影投射.
- if (ViewFamily.EngineShowFlags.DynamicShadows)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderShadowProjections);
- RenderModulatedShadowProjections(RHICmdList);
- }
- }
-
- // 绘制半透明.
- if (ViewFamily.EngineShowFlags.Translucency)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderTranslucency);
- SCOPE_CYCLE_COUNTER(STAT_TranslucencyDrawTime);
-
- RenderTranslucency(RHICmdList, ViewList);
-
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
-
- if (!bIsFullPrepassEnabled)
- {
- // Adreno遮挡剔除模式.
- if (bAdrenoOcclusionMode)
- {
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Occlusion));
- // flush
- RHICmdList.SubmitCommandsHint();
- bSubmitOffscreenRendering = false; // submit once
- // Issue occlusion queries
- RenderOcclusion(RHICmdList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
- }
-
- // 在MSAA被解析前预计算色调映射(只在iOS有效)
- if (!bGammaSpace)
- {
- PreTonemapMSAA(RHICmdList);
- }
-
- // 结束场景颜色渲染.
- RHICmdList.EndRenderPass();
-
- // 优化返回场景颜色的解析纹理(开启了MSAA才有).
- return SceneColorResolve ? SceneColorResolve : SceneColor;
- }
移动端前向渲染主要步骤跟PC端类似,依次渲染PrePass、BasePass、特殊渲染(贴花、AO、遮挡剔除等)、半透明物体。它们的流程图如下:
DrawClearQuad*
RenderPrePass*
RenderMobileBasePass
RenderOcclusion*
RenderDecals*
RenderModulatedShadowProjections*
RenderTranslucency*
PreTonemapMSAA*
其中遮挡剔除和GPU厂商相关,比如高通Adreno系列GPU芯片要求在Flush渲染指令和Switch FBO之间:
Render Opaque -> Render Translucent -> Flush -> Render Queries -> Switch FBO
那么UE也遵循了Adreno系列芯片的特殊要求,对其的遮挡剔除做了特殊的处理。
Adreno系列芯片支持TBDR架构的Bin和普通的Direct两种混合模式的渲染,会在遮挡查询时自动切换到Direct模式,以降低遮挡查询的开销。如果不在Flush渲染指令和Switch FBO之间提交查询,会卡住整个渲染管线,引发渲染性能下降。
MSAA由于天然硬件支持且效果和效率达到很好的平衡,是UE在移动端前向渲染的首选抗锯齿。因此,上述代码中出现了不少处理MSAA的逻辑,包含颜色和深度纹理及其资源状态。如果开启了MSAA,默认情况下是在RHICmdList.EndRenderPass()
解析场景颜色(同时将芯片分块上的数据写回到系统显存中),由此获得抗锯齿的纹理。移动端的MSAA默认不开启,但可在以下界面中设置:
前向渲染支持Gamma空间和HDR(线性空间)两种颜色空间模式。如果是线性空间,则渲染后期需要色调映射等步骤。默认是HDR,可在项目配置中更改:
上述代码的bRequiresMultiPass标明了是否需要专用的渲染Pass绘制半透明物体,决定它的值由以下代码完成:
- // Engine\Source\Runtime\Renderer\Private\MobileShadingRenderer.cpp
-
- bool FMobileSceneRenderer::RequiresMultiPass(FRHICommandListImmediate& RHICmdList, const FViewInfo& View) const
- {
- // Vulkan uses subpasses
- if (IsVulkanPlatform(ShaderPlatform))
- {
- return false;
- }
-
- // All iOS support frame_buffer_fetch
- if (IsMetalMobilePlatform(ShaderPlatform))
- {
- return false;
- }
-
- if (IsMobileDeferredShadingEnabled(ShaderPlatform))
- {
- // TODO: add GL support
- return true;
- }
-
- // Some Androids support frame_buffer_fetch
- if (IsAndroidOpenGLESPlatform(ShaderPlatform) && (GSupportsShaderFramebufferFetch || GSupportsShaderDepthStencilFetch))
- {
- return false;
- }
-
- // Always render reflection capture in single pass
- if (View.bIsPlanarReflection || View.bIsSceneCapture)
- {
- return false;
- }
-
- // Always render LDR in single pass
- if (!IsMobileHDR())
- {
- return false;
- }
-
- // MSAA depth can't be sampled or resolved, unless we are on PC (no vulkan)
- if (NumMSAASamples > 1 && !IsSimulatedPlatform(ShaderPlatform))
- {
- return false;
- }
-
- return true;
- }
与之类似但意义不同的是bIsMultiViewApplication和bIsMobileMultiViewEnabled标记,标明是否开启多视图渲染以及多视图的个数。只用于VR,由控制台变量vr.MobileMultiView
及图形API等因素决定。MultiView用于XR,用于优化渲染两次的情形,它存在Basic和Advanced两种模式:
用于优化VR等渲染的MultiView对比图。上:未采用MultiView模式的渲染,两个眼睛各自提交绘制指令;中:基础MultiView模式,复用提交指令,在GPU层复制多一份Command List;下:高级MultiView模式,可以复用DC、Command List、几何信息。
bKeepDepthContent标明是否要保留深度内容,决定它的代码:
- bKeepDepthContent =
- bRequiresMultiPass ||
- bForceDepthResolve ||
- bRequiresPixelProjectedPlanarRelfectionPass ||
- bSeparateTranslucencyActive ||
- Views[0].bIsReflectionCapture ||
- (bDeferredShading && bPostProcessUsesSceneDepth) ||
- bShouldRenderVelocities ||
- bIsFullPrepassEnabled;
-
- // 带MSAA的深度从不保留.
- bKeepDepthContent = (NumMSAASamples > 1 ? false : bKeepDepthContent);
上述代码还揭示了平面反射在移动端的一种特殊渲染方式:Pixel Projected Reflection(PPR)。它的实现原理类似于SSR,但需要的数据更少,只需要场景颜色、深度缓冲和反射区域。它的核心步骤:
PPR效果一览。
PPR可以在工程配置中设置:
UE在4.26在移动端渲染管线增加了延迟渲染分支,并在4.27做了改进和优化。移动端是否开启延迟着色的特性由以下代码决定:
- // Engine\Source\Runtime\RenderCore\Private\RenderUtils.cpp
-
- bool IsMobileDeferredShadingEnabled(const FStaticShaderPlatform Platform)
- {
- // 禁用OpenGL的延迟着色.
- if (IsOpenGLPlatform(Platform))
- {
- // needs MRT framebuffer fetch or PLS
- return false;
- }
-
- // 控制台变量"r.Mobile.ShadingPath"要为1.
- static auto* MobileShadingPathCvar = IConsoleManager::Get().FindTConsoleVariableDataInt(TEXT("r.Mobile.ShadingPath"));
- return MobileShadingPathCvar->GetValueOnAnyThread() == 1;
- }
简单地说就是非OpenGL图形API且控制台变量r.Mobile.ShadingPath
设为1。
r.Mobile.ShadingPath
不可在编辑器动态设置值,只能在项目工程根目录/Config/DefaultEngine.ini增加以下字段来开启:[/Script/Engine.RendererSettings]
r.Mobile.ShadingPath=1
添加以上字段后,重启UE编辑器,等待shader编译完成即可预览移动端延迟着色效果。
以下是延迟渲染分支FMobileSceneRenderer::RenderDeferred
的代码和解析:
- FRHITexture* FMobileSceneRenderer::RenderDeferred(FRHICommandListImmediate& RHICmdList, const TArrayView<const FViewInfo*> ViewList, const FSortedLightSetSceneInfo& SortedLightSet)
- {
- FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(RHICmdList);
-
- // 准备GBuffer.
- FRHITexture* ColorTargets[4] = {
- SceneContext.GetSceneColorSurface(),
- SceneContext.GetGBufferATexture().GetReference(),
- SceneContext.GetGBufferBTexture().GetReference(),
- SceneContext.GetGBufferCTexture().GetReference()
- };
-
- // RHI是否需要将GBuffer存储到GPU的系统内存中,并在单独的渲染通道中进行着色.
- ERenderTargetActions GBufferAction = bRequiresMultiPass ? ERenderTargetActions::Clear_Store : ERenderTargetActions::Clear_DontStore;
- EDepthStencilTargetActions DepthAction = bKeepDepthContent ? EDepthStencilTargetActions::ClearDepthStencil_StoreDepthStencil : EDepthStencilTargetActions::ClearDepthStencil_DontStoreDepthStencil;
-
- // RT的load/store动作.
- ERenderTargetActions ColorTargetsAction[4] = {ERenderTargetActions::Clear_Store, GBufferAction, GBufferAction, GBufferAction};
- if (bIsFullPrepassEnabled)
- {
- ERenderTargetActions DepthTarget = MakeRenderTargetActions(ERenderTargetLoadAction::ELoad, GetStoreAction(GetDepthActions(DepthAction)));
- ERenderTargetActions StencilTarget = MakeRenderTargetActions(ERenderTargetLoadAction::ELoad, GetStoreAction(GetStencilActions(DepthAction)));
- DepthAction = MakeDepthStencilTargetActions(DepthTarget, StencilTarget);
- }
-
- FRHIRenderPassInfo BasePassInfo = FRHIRenderPassInfo();
- int32 ColorTargetIndex = 0;
- for (; ColorTargetIndex < UE_ARRAY_COUNT(ColorTargets); ++ColorTargetIndex)
- {
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].RenderTarget = ColorTargets[ColorTargetIndex];
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].ResolveTarget = nullptr;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].ArraySlice = -1;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].MipIndex = 0;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].Action = ColorTargetsAction[ColorTargetIndex];
- }
-
- if (MobileRequiresSceneDepthAux(ShaderPlatform))
- {
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].RenderTarget = SceneContext.SceneDepthAux->GetRenderTargetItem().ShaderResourceTexture.GetReference();
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].ResolveTarget = nullptr;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].ArraySlice = -1;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].MipIndex = 0;
- BasePassInfo.ColorRenderTargets[ColorTargetIndex].Action = GBufferAction;
- ColorTargetIndex++;
- }
-
- BasePassInfo.DepthStencilRenderTarget.DepthStencilTarget = SceneContext.GetSceneDepthSurface();
- BasePassInfo.DepthStencilRenderTarget.ResolveTarget = nullptr;
- BasePassInfo.DepthStencilRenderTarget.Action = DepthAction;
- BasePassInfo.DepthStencilRenderTarget.ExclusiveDepthStencil = FExclusiveDepthStencil::DepthWrite_StencilWrite;
-
- BasePassInfo.SubpassHint = ESubpassHint::DeferredShadingSubpass;
- if (!bIsFullPrepassEnabled)
- {
- BasePassInfo.NumOcclusionQueries = ComputeNumOcclusionQueriesToBatch();
- BasePassInfo.bOcclusionQueries = BasePassInfo.NumOcclusionQueries != 0;
- }
- BasePassInfo.ShadingRateTexture = nullptr;
- BasePassInfo.bIsMSAA = false;
- BasePassInfo.MultiViewCount = 0;
-
- RHICmdList.BeginRenderPass(BasePassInfo, TEXT("BasePassRendering"));
-
- if (GIsEditor && !Views[0].bIsSceneCapture)
- {
- DrawClearQuad(RHICmdList, Views[0].BackgroundColor);
- }
-
- // 深度PrePass
- if (!bIsFullPrepassEnabled)
- {
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLM_MobilePrePass));
- // Depth pre-pass
- RenderPrePass(RHICmdList);
- }
-
- // BasePass: 不透明和镂空物体.
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Opaque));
- RenderMobileBasePass(RHICmdList, ViewList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
-
- // 遮挡剔除.
- if (!bIsFullPrepassEnabled)
- {
- // Issue occlusion queries
- RHICmdList.SetCurrentStat(GET_STATID(STAT_CLMM_Occlusion));
- RenderOcclusion(RHICmdList);
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
-
- // 非多Pass模式
- if (!bRequiresMultiPass)
- {
- // 下个子Pass: SSceneColor + GBuffer写入, SceneDepth只读.
- RHICmdList.NextSubpass();
-
- // 渲染贴花.
- if (ViewFamily.EngineShowFlags.Decals)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderDecals);
- RenderDecals(RHICmdList);
- }
-
- // 下个子Pass: SceneColor写入, SceneDepth只读
- RHICmdList.NextSubpass();
-
- // 延迟光照着色.
- MobileDeferredShadingPass(RHICmdList, *Scene, ViewList, SortedLightSet);
-
- // 绘制半透明.
- if (ViewFamily.EngineShowFlags.Translucency)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderTranslucency);
- SCOPE_CYCLE_COUNTER(STAT_TranslucencyDrawTime);
- RenderTranslucency(RHICmdList, ViewList);
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
-
- // 结束渲染Pass.
- RHICmdList.EndRenderPass();
- }
- // 多Pass模式(PC设备模拟的移动端).
- else
- {
- // 结束子pass.
- RHICmdList.NextSubpass();
- RHICmdList.NextSubpass();
- RHICmdList.EndRenderPass();
-
- // SceneColor + GBuffer write, SceneDepth is read only
- {
- for (int32 Index = 0; Index < UE_ARRAY_COUNT(ColorTargets); ++Index)
- {
- BasePassInfo.ColorRenderTargets[Index].Action = ERenderTargetActions::Load_Store;
- }
- BasePassInfo.DepthStencilRenderTarget.Action = EDepthStencilTargetActions::LoadDepthStencil_StoreDepthStencil;
- BasePassInfo.DepthStencilRenderTarget.ExclusiveDepthStencil = FExclusiveDepthStencil::DepthRead_StencilRead;
- BasePassInfo.SubpassHint = ESubpassHint::None;
- BasePassInfo.NumOcclusionQueries = 0;
- BasePassInfo.bOcclusionQueries = false;
-
- RHICmdList.BeginRenderPass(BasePassInfo, TEXT("AfterBasePass"));
-
- // 渲染贴花.
- if (ViewFamily.EngineShowFlags.Decals)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderDecals);
- RenderDecals(RHICmdList);
- }
-
- RHICmdList.EndRenderPass();
- }
-
- // SceneColor write, SceneDepth is read only
- {
- FRHIRenderPassInfo ShadingPassInfo(
- SceneContext.GetSceneColorSurface(),
- ERenderTargetActions::Load_Store,
- nullptr,
- SceneContext.GetSceneDepthSurface(),
- EDepthStencilTargetActions::LoadDepthStencil_StoreDepthStencil,
- nullptr,
- nullptr,
- VRSRB_Passthrough,
- FExclusiveDepthStencil::DepthRead_StencilWrite
- );
- ShadingPassInfo.NumOcclusionQueries = 0;
- ShadingPassInfo.bOcclusionQueries = false;
-
- RHICmdList.BeginRenderPass(ShadingPassInfo, TEXT("MobileShadingPass"));
-
- // 延迟光照着色.
- MobileDeferredShadingPass(RHICmdList, *Scene, ViewList, SortedLightSet);
-
- // 绘制半透明.
- if (ViewFamily.EngineShowFlags.Translucency)
- {
- CSV_SCOPED_TIMING_STAT_EXCLUSIVE(RenderTranslucency);
- SCOPE_CYCLE_COUNTER(STAT_TranslucencyDrawTime);
- RenderTranslucency(RHICmdList, ViewList);
- FRHICommandListExecutor::GetImmediateCommandList().PollOcclusionQueries();
- RHICmdList.ImmediateFlush(EImmediateFlushType::DispatchToRHIThread);
- }
-
- RHICmdList.EndRenderPass();
- }
- }
-
- return ColorTargets[0];
- }
由上面可知,移动端的延迟渲染管线和PC比较类似,先渲染BasePass,获得GBuffer几何信息,再执行光照计算。它们的流程图如下:
DrawClearQuad*
RenderPrePass*
RenderMobileBasePass
RenderOcclusion*
RenderDecals*
MobileDeferredShadingPass*
RenderTranslucency*
PreTonemapMSAA*
当然,也有和PC不一样的地方,最明显的是移动端使用了适配TB(D)R架构的SubPass渲染,使得移动端在渲染PrePass深度、BasePass、光照计算时,让场景颜色、深度、GBuffer等信息一直在On-Chip的缓冲区中,提升渲染效率,降低设备能耗。
延迟渲染光照的过程由MobileDeferredShadingPass
担当:
- void MobileDeferredShadingPass(
- FRHICommandListImmediate& RHICmdList,
- const FScene& Scene,
- const TArrayView<const FViewInfo*> PassViews,
- const FSortedLightSetSceneInfo &SortedLightSet)
- {
- SCOPED_DRAW_EVENT(RHICmdList, MobileDeferredShading);
-
- const FViewInfo& View0 = *PassViews[0];
-
- FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(RHICmdList);
- // 创建Uniform Buffer.
- FUniformBufferRHIRef PassUniformBuffer = CreateMobileSceneTextureUniformBuffer(RHICmdList);
- FUniformBufferStaticBindings GlobalUniformBuffers(PassUniformBuffer);
- SCOPED_UNIFORM_BUFFER_GLOBAL_BINDINGS(RHICmdList, GlobalUniformBuffers);
- // 设置视口.
- RHICmdList.SetViewport(View0.ViewRect.Min.X, View0.ViewRect.Min.Y, 0.0f, View0.ViewRect.Max.X, View0.ViewRect.Max.Y, 1.0f);
-
- // 光照的默认材质.
- FCachedLightMaterial DefaultMaterial;
- DefaultMaterial.MaterialProxy = UMaterial::GetDefaultMaterial(MD_LightFunction)->GetRenderProxy();
- DefaultMaterial.Material = DefaultMaterial.MaterialProxy->GetMaterialNoFallback(ERHIFeatureLevel::ES3_1);
- check(DefaultMaterial.Material);
-
- // 绘制平行光.
- RenderDirectLight(RHICmdList, Scene, View0, DefaultMaterial);
-
- if (GMobileUseClusteredDeferredShading == 0)
- {
- // 渲染非分簇的简单光源.
- RenderSimpleLights(RHICmdList, Scene, PassViews, SortedLightSet, DefaultMaterial);
- }
-
- // 渲染非分簇的局部光源.
- int32 NumLights = SortedLightSet.SortedLights.Num();
- int32 StandardDeferredStart = SortedLightSet.SimpleLightsEnd;
- if (GMobileUseClusteredDeferredShading != 0)
- {
- StandardDeferredStart = SortedLightSet.ClusteredSupportedEnd;
- }
-
- // 渲染局部光源.
- for (int32 LightIdx = StandardDeferredStart; LightIdx < NumLights; ++LightIdx)
- {
- const FSortedLightSceneInfo& SortedLight = SortedLightSet.SortedLights[LightIdx];
- const FLightSceneInfo& LightSceneInfo = *SortedLight.LightSceneInfo;
- RenderLocalLight(RHICmdList, Scene, View0, LightSceneInfo, DefaultMaterial);
- }
- }
下面继续分析渲染不同类型光源的接口:
- // Engine\Source\Runtime\Renderer\Private\MobileDeferredShadingPass.cpp
-
- // 渲染平行光
- static void RenderDirectLight(FRHICommandListImmediate& RHICmdList, const FScene& Scene, const FViewInfo& View, const FCachedLightMaterial& DefaultLightMaterial)
- {
- FSceneRenderTargets& SceneContext = FSceneRenderTargets::Get(RHICmdList);
-
- // 查找第一个平行光.
- FLightSceneInfo* DirectionalLight = nullptr;
- for (int32 ChannelIdx = 0; ChannelIdx < UE_ARRAY_COUNT(Scene.MobileDirectionalLights) && !DirectionalLight; ChannelIdx++)
- {
- DirectionalLight = Scene.MobileDirectionalLights[ChannelIdx];
- }
-
- // 渲染状态.
- FGraphicsPipelineStateInitializer GraphicsPSOInit;
- RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
- // 增加自发光到SceneColor.
- GraphicsPSOInit.BlendState = TStaticBlendState<CW_RGB, BO_Add, BF_One, BF_One>::GetRHI();
- GraphicsPSOInit.RasterizerState = TStaticRasterizerState<>::GetRHI();
- // 只绘制默认光照模型(MSM_DefaultLit)的像素.
- uint8 StencilRef = GET_STENCIL_MOBILE_SM_MASK(MSM_DefaultLit);
- GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState<
- false, CF_Always,
- true, CF_Equal, SO_Keep, SO_Keep, SO_Keep,
- false, CF_Always, SO_Keep, SO_Keep, SO_Keep,
- GET_STENCIL_MOBILE_SM_MASK(0x7), 0x00>::GetRHI(); // 4 bits for shading models
-
- // 处理VS.
- TShaderMapRef<FPostProcessVS> VertexShader(View.ShaderMap);
-
- const FMaterialRenderProxy* LightFunctionMaterialProxy = nullptr;
- if (View.Family->EngineShowFlags.LightFunctions && DirectionalLight)
- {
- LightFunctionMaterialProxy = DirectionalLight->Proxy->GetLightFunctionMaterial();
- }
- FMobileDirectLightFunctionPS::FPermutationDomain PermutationVector = FMobileDirectLightFunctionPS::BuildPermutationVector(View, DirectionalLight != nullptr);
- FCachedLightMaterial LightMaterial;
- TShaderRef<FMobileDirectLightFunctionPS> PixelShader;
- GetLightMaterial(DefaultLightMaterial, LightFunctionMaterialProxy, PermutationVector.ToDimensionValueId(), LightMaterial, PixelShader);
-
- GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = GFilterVertexDeclaration.VertexDeclarationRHI;
- GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
- GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();
- GraphicsPSOInit.PrimitiveType = PT_TriangleList;
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit);
-
- // 处理PS.
- FMobileDirectLightFunctionPS::FParameters PassParameters;
- PassParameters.Forward = View.ForwardLightingResources->ForwardLightDataUniformBuffer;
- PassParameters.MobileDirectionalLight = Scene.UniformBuffers.MobileDirectionalLightUniformBuffers[1];
- PassParameters.ReflectionCaptureData = Scene.UniformBuffers.ReflectionCaptureUniformBuffer;
- FReflectionUniformParameters ReflectionUniformParameters;
- SetupReflectionUniformParameters(View, ReflectionUniformParameters);
- PassParameters.ReflectionsParameters = CreateUniformBufferImmediate(ReflectionUniformParameters, UniformBuffer_SingleDraw);
- PassParameters.LightFunctionParameters = FVector4(1.0f, 1.0f, 0.0f, 0.0f);
- if (DirectionalLight)
- {
- const bool bUseMovableLight = DirectionalLight && !DirectionalLight->Proxy->HasStaticShadowing();
- PassParameters.LightFunctionParameters2 = FVector(DirectionalLight->Proxy->GetLightFunctionFadeDistance(), DirectionalLight->Proxy->GetLightFunctionDisabledBrightness(), bUseMovableLight ? 1.0f : 0.0f);
- const FVector Scale = DirectionalLight->Proxy->GetLightFunctionScale();
- // Switch x and z so that z of the user specified scale affects the distance along the light direction
- const FVector InverseScale = FVector(1.f / Scale.Z, 1.f / Scale.Y, 1.f / Scale.X);
- PassParameters.WorldToLight = DirectionalLight->Proxy->GetWorldToLight() * FScaleMatrix(FVector(InverseScale));
- }
- FMobileDirectLightFunctionPS::SetParameters(RHICmdList, PixelShader, View, LightMaterial.MaterialProxy, *LightMaterial.Material, PassParameters);
-
- RHICmdList.SetStencilRef(StencilRef);
-
- const FIntPoint TargetSize = SceneContext.GetBufferSizeXY();
-
- // 用全屏幕的矩形绘制.
- DrawRectangle(
- RHICmdList,
- 0, 0,
- View.ViewRect.Width(), View.ViewRect.Height(),
- View.ViewRect.Min.X, View.ViewRect.Min.Y,
- View.ViewRect.Width(), View.ViewRect.Height(),
- FIntPoint(View.ViewRect.Width(), View.ViewRect.Height()),
- TargetSize,
- VertexShader);
- }
-
- // 渲染非分簇模式的简单光源.
- static void RenderSimpleLights(
- FRHICommandListImmediate& RHICmdList,
- const FScene& Scene,
- const TArrayView<const FViewInfo*> PassViews,
- const FSortedLightSetSceneInfo &SortedLightSet,
- const FCachedLightMaterial& DefaultMaterial)
- {
- const FSimpleLightArray& SimpleLights = SortedLightSet.SimpleLights;
- const int32 NumViews = PassViews.Num();
- const FViewInfo& View0 = *PassViews[0];
-
- // 处理VS.
- TShaderMapRef<TDeferredLightVS<true>> VertexShader(View0.ShaderMap);
- TShaderRef<FMobileRadialLightFunctionPS> PixelShaders[2];
- {
- const FMaterialShaderMap* MaterialShaderMap = DefaultMaterial.Material->GetRenderingThreadShaderMap();
- FMobileRadialLightFunctionPS::FPermutationDomain PermutationVector;
- PermutationVector.Set<FMobileRadialLightFunctionPS::FSpotLightDim>(false);
- PermutationVector.Set<FMobileRadialLightFunctionPS::FIESProfileDim>(false);
- PermutationVector.Set<FMobileRadialLightFunctionPS::FInverseSquaredDim>(false);
- PixelShaders[0] = MaterialShaderMap->GetShader<FMobileRadialLightFunctionPS>(PermutationVector);
- PermutationVector.Set<FMobileRadialLightFunctionPS::FInverseSquaredDim>(true);
- PixelShaders[1] = MaterialShaderMap->GetShader<FMobileRadialLightFunctionPS>(PermutationVector);
- }
-
- // 设置PSO.
- FGraphicsPipelineStateInitializer GraphicsPSOLight[2];
- {
- SetupSimpleLightPSO(RHICmdList, View0, VertexShader, PixelShaders[0], GraphicsPSOLight[0]);
- SetupSimpleLightPSO(RHICmdList, View0, VertexShader, PixelShaders[1], GraphicsPSOLight[1]);
- }
-
- // 设置模板缓冲.
- FGraphicsPipelineStateInitializer GraphicsPSOLightMask;
- {
- RHICmdList.ApplyCachedRenderTargets(GraphicsPSOLightMask);
- GraphicsPSOLightMask.PrimitiveType = PT_TriangleList;
- GraphicsPSOLightMask.BlendState = TStaticBlendStateWriteMask<CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE>::GetRHI();
- GraphicsPSOLightMask.RasterizerState = View0.bReverseCulling ? TStaticRasterizerState<FM_Solid, CM_CCW>::GetRHI() : TStaticRasterizerState<FM_Solid, CM_CW>::GetRHI();
- // set stencil to 1 where depth test fails
- GraphicsPSOLightMask.DepthStencilState = TStaticDepthStencilState<
- false, CF_DepthNearOrEqual,
- true, CF_Always, SO_Keep, SO_Replace, SO_Keep,
- false, CF_Always, SO_Keep, SO_Keep, SO_Keep,
- 0x00, STENCIL_SANDBOX_MASK>::GetRHI();
- GraphicsPSOLightMask.BoundShaderState.VertexDeclarationRHI = GetVertexDeclarationFVector4();
- GraphicsPSOLightMask.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
- GraphicsPSOLightMask.BoundShaderState.PixelShaderRHI = nullptr;
- }
-
- // 遍历所有简单光源列表, 执行着色计算.
- for (int32 LightIndex = 0; LightIndex < SimpleLights.InstanceData.Num(); LightIndex++)
- {
- const FSimpleLightEntry& SimpleLight = SimpleLights.InstanceData[LightIndex];
- for (int32 ViewIndex = 0; ViewIndex < NumViews; ViewIndex++)
- {
- const FViewInfo& View = *PassViews[ViewIndex];
- const FSimpleLightPerViewEntry& SimpleLightPerViewData = SimpleLights.GetViewDependentData(LightIndex, ViewIndex, NumViews);
- const FSphere LightBounds(SimpleLightPerViewData.Position, SimpleLight.Radius);
-
- if (NumViews > 1)
- {
- // set viewports only we we have more than one
- // otherwise it is set at the start of the pass
- RHICmdList.SetViewport(View.ViewRect.Min.X, View.ViewRect.Min.Y, 0.0f, View.ViewRect.Max.X, View.ViewRect.Max.Y, 1.0f);
- }
-
- // 渲染光源遮罩.
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOLightMask);
- VertexShader->SetSimpleLightParameters(RHICmdList, View, LightBounds);
- RHICmdList.SetStencilRef(1);
- StencilingGeometry::DrawSphere(RHICmdList);
-
- // 渲染光源.
- FMobileRadialLightFunctionPS::FParameters PassParameters;
- FDeferredLightUniformStruct DeferredLightUniformsValue;
- SetupSimpleDeferredLightParameters(SimpleLight, SimpleLightPerViewData, DeferredLightUniformsValue);
- PassParameters.DeferredLightUniforms = TUniformBufferRef<FDeferredLightUniformStruct>::CreateUniformBufferImmediate(DeferredLightUniformsValue, EUniformBufferUsage::UniformBuffer_SingleFrame);
- PassParameters.IESTexture = GWhiteTexture->TextureRHI;
- PassParameters.IESTextureSampler = GWhiteTexture->SamplerStateRHI;
- if (SimpleLight.Exponent == 0)
- {
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOLight[1]);
- FMobileRadialLightFunctionPS::SetParameters(RHICmdList, PixelShaders[1], View, DefaultMaterial.MaterialProxy, *DefaultMaterial.Material, PassParameters);
- }
- else
- {
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOLight[0]);
- FMobileRadialLightFunctionPS::SetParameters(RHICmdList, PixelShaders[0], View, DefaultMaterial.MaterialProxy, *DefaultMaterial.Material, PassParameters);
- }
- VertexShader->SetSimpleLightParameters(RHICmdList, View, LightBounds);
-
- // 只绘制默认光照模型(MSM_DefaultLit)的像素.
- uint8 StencilRef = GET_STENCIL_MOBILE_SM_MASK(MSM_DefaultLit);
- RHICmdList.SetStencilRef(StencilRef);
-
- // 用球体渲染光源(点光源和聚光灯), 以快速剔除光源影响之外的像素.
- StencilingGeometry::DrawSphere(RHICmdList);
- }
- }
- }
-
- // 渲染局部光源.
- static void RenderLocalLight(
- FRHICommandListImmediate& RHICmdList,
- const FScene& Scene,
- const FViewInfo& View,
- const FLightSceneInfo& LightSceneInfo,
- const FCachedLightMaterial& DefaultLightMaterial)
- {
- if (!LightSceneInfo.ShouldRenderLight(View))
- {
- return;
- }
-
- // 忽略非局部光源(光源和聚光灯之外的光源).
- const uint8 LightType = LightSceneInfo.Proxy->GetLightType();
- const bool bIsSpotLight = LightType == LightType_Spot;
- const bool bIsPointLight = LightType == LightType_Point;
- if (!bIsSpotLight && !bIsPointLight)
- {
- return;
- }
-
- // 绘制光源模板.
- if (GMobileUseLightStencilCulling != 0)
- {
- RenderLocalLight_StencilMask(RHICmdList, Scene, View, LightSceneInfo);
- }
-
- // 处理IES光照.
- bool bUseIESTexture = false;
- FTexture* IESTextureResource = GWhiteTexture;
- if (View.Family->EngineShowFlags.TexturedLightProfiles && LightSceneInfo.Proxy->GetIESTextureResource())
- {
- IESTextureResource = LightSceneInfo.Proxy->GetIESTextureResource();
- bUseIESTexture = true;
- }
-
- FGraphicsPipelineStateInitializer GraphicsPSOInit;
- RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
- GraphicsPSOInit.BlendState = TStaticBlendState<CW_RGBA, BO_Add, BF_One, BF_One, BO_Add, BF_One, BF_One>::GetRHI();
- GraphicsPSOInit.PrimitiveType = PT_TriangleList;
- const FSphere LightBounds = LightSceneInfo.Proxy->GetBoundingSphere();
-
- // 设置光源光栅化和深度状态.
- if (GMobileUseLightStencilCulling != 0)
- {
- SetLocalLightRasterizerAndDepthState_StencilMask(GraphicsPSOInit, View);
- }
- else
- {
- SetLocalLightRasterizerAndDepthState(GraphicsPSOInit, View, LightBounds);
- }
-
- // 设置VS
- TShaderMapRef<TDeferredLightVS<true>> VertexShader(View.ShaderMap);
-
- const FMaterialRenderProxy* LightFunctionMaterialProxy = nullptr;
- if (View.Family->EngineShowFlags.LightFunctions)
- {
- LightFunctionMaterialProxy = LightSceneInfo.Proxy->GetLightFunctionMaterial();
- }
- FMobileRadialLightFunctionPS::FPermutationDomain PermutationVector;
- PermutationVector.Set<FMobileRadialLightFunctionPS::FSpotLightDim>(bIsSpotLight);
- PermutationVector.Set<FMobileRadialLightFunctionPS::FInverseSquaredDim>(LightSceneInfo.Proxy->IsInverseSquared());
- PermutationVector.Set<FMobileRadialLightFunctionPS::FIESProfileDim>(bUseIESTexture);
- FCachedLightMaterial LightMaterial;
- TShaderRef<FMobileRadialLightFunctionPS> PixelShader;
- GetLightMaterial(DefaultLightMaterial, LightFunctionMaterialProxy, PermutationVector.ToDimensionValueId(), LightMaterial, PixelShader);
-
- GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = GetVertexDeclarationFVector4();
- GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
- GraphicsPSOInit.BoundShaderState.PixelShaderRHI = PixelShader.GetPixelShader();
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit);
-
- VertexShader->SetParameters(RHICmdList, View, &LightSceneInfo);
-
- // 设置PS.
- FMobileRadialLightFunctionPS::FParameters PassParameters;
- PassParameters.DeferredLightUniforms = TUniformBufferRef<FDeferredLightUniformStruct>::CreateUniformBufferImmediate(GetDeferredLightParameters(View, LightSceneInfo), EUniformBufferUsage::UniformBuffer_SingleFrame);
- PassParameters.IESTexture = IESTextureResource->TextureRHI;
- PassParameters.IESTextureSampler = IESTextureResource->SamplerStateRHI;
- const float TanOuterAngle = bIsSpotLight ? FMath::Tan(LightSceneInfo.Proxy->GetOuterConeAngle()) : 1.0f;
- PassParameters.LightFunctionParameters = FVector4(TanOuterAngle, 1.0f /*ShadowFadeFraction*/, bIsSpotLight ? 1.0f : 0.0f, bIsPointLight ? 1.0f : 0.0f);
- PassParameters.LightFunctionParameters2 = FVector(LightSceneInfo.Proxy->GetLightFunctionFadeDistance(), LightSceneInfo.Proxy->GetLightFunctionDisabledBrightness(), 0.0f);
- const FVector Scale = LightSceneInfo.Proxy->GetLightFunctionScale();
- // Switch x and z so that z of the user specified scale affects the distance along the light direction
- const FVector InverseScale = FVector(1.f / Scale.Z, 1.f / Scale.Y, 1.f / Scale.X);
- PassParameters.WorldToLight = LightSceneInfo.Proxy->GetWorldToLight() * FScaleMatrix(FVector(InverseScale));
- FMobileRadialLightFunctionPS::SetParameters(RHICmdList, PixelShader, View, LightMaterial.MaterialProxy, *LightMaterial.Material, PassParameters);
-
- // 只绘制默认光照模型(MSM_DefaultLit)的像素.
- uint8 StencilRef = GET_STENCIL_MOBILE_SM_MASK(MSM_DefaultLit);
- RHICmdList.SetStencilRef(StencilRef);
-
- // 点光源用球体绘制.
- if (LightType == LightType_Point)
- {
- StencilingGeometry::DrawSphere(RHICmdList);
- }
- // 聚光灯用锥体绘制.
- else // LightType_Spot
- {
- StencilingGeometry::DrawCone(RHICmdList);
- }
- }
绘制光源时,按光源类型划分为三个步骤:平行光、非分簇简单光源、局部光源(点光源和聚光灯)。需要注意的是,移动端只支持默认光照模型(MSM_DefaultLit)的计算,其它高级光照模型(头发、次表面散射、清漆、眼睛、布料等)暂不支持。
绘制平行光时,最多只能绘制1个,采用的是全屏幕矩形绘制,支持若干级CSM阴影。
绘制非分簇简单光源时,无论是点光源还是聚光灯,都采用球体绘制,不支持阴影。
绘制局部光源时,会复杂许多,先绘制局部光源模板缓冲,再设置光栅化和深度状态,最后才绘制光源。其中点光源采用球体绘制,不支持阴影;聚光灯采用锥体绘制,可以支持阴影,默认情况下,聚光灯不支持动态光影计算,需要在工程配置中开启:
此外,是否开启模板剔除光源不相交的像素由GMobileUseLightStencilCulling决定,而GMobileUseLightStencilCulling又由r.Mobile.UseLightStencilCulling
决定,默认为1(即开启状态)。渲染光源的模板缓冲代码如下:
- static void RenderLocalLight_StencilMask(FRHICommandListImmediate& RHICmdList, const FScene& Scene, const FViewInfo& View, const FLightSceneInfo& LightSceneInfo)
- {
- const uint8 LightType = LightSceneInfo.Proxy->GetLightType();
-
- FGraphicsPipelineStateInitializer GraphicsPSOInit;
- // 应用缓存好的RT(颜色/深度等).
- RHICmdList.ApplyCachedRenderTargets(GraphicsPSOInit);
- GraphicsPSOInit.PrimitiveType = PT_TriangleList;
- // 禁用所有RT的写操作.
- GraphicsPSOInit.BlendState = TStaticBlendStateWriteMask<CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE, CW_NONE>::GetRHI();
- GraphicsPSOInit.RasterizerState = View.bReverseCulling ? TStaticRasterizerState<FM_Solid, CM_CCW>::GetRHI() : TStaticRasterizerState<FM_Solid, CM_CW>::GetRHI();
- // 如果深度测试失败, 则写入模板缓冲值为1.
- GraphicsPSOInit.DepthStencilState = TStaticDepthStencilState<
- false, CF_DepthNearOrEqual,
- true, CF_Always, SO_Keep, SO_Replace, SO_Keep,
- false, CF_Always, SO_Keep, SO_Keep, SO_Keep,
- 0x00,
- // 注意只写入Pass专用的沙盒(SANBOX)位, 即模板缓冲的索引为0的位.
- STENCIL_SANDBOX_MASK>::GetRHI();
-
- // 绘制光源模板的VS是TDeferredLightVS.
- TShaderMapRef<TDeferredLightVS<true> > VertexShader(View.ShaderMap);
- GraphicsPSOInit.BoundShaderState.VertexDeclarationRHI = GetVertexDeclarationFVector4();
- GraphicsPSOInit.BoundShaderState.VertexShaderRHI = VertexShader.GetVertexShader();
- // PS为空.
- GraphicsPSOInit.BoundShaderState.PixelShaderRHI = nullptr;
-
- SetGraphicsPipelineState(RHICmdList, GraphicsPSOInit);
- VertexShader->SetParameters(RHICmdList, View, &LightSceneInfo);
- // 模板值为1.
- RHICmdList.SetStencilRef(1);
-
- // 根据不同光源用不同形状绘制.
- if (LightType == LightType_Point)
- {
- StencilingGeometry::DrawSphere(RHICmdList);
- }
- else // LightType_Spot
- {
- StencilingGeometry::DrawCone(RHICmdList);
- }
- }
每个局部光源首先绘制光源范围内的Mask,再计算通过了Stencil测试(Early-Z)的像素的光照。具体的剖析过程以下图的聚光灯为例:
上:场景中一盏等待渲染的聚光灯;中:利用模板Pass绘制出的模板Mask(白色区域),标记了屏幕空间中和聚光灯形状重叠且深度更近的像素 ;下:对有效像素进行光照计算后的效果。
对有效像素进行光照计算时,使用的DepthStencil状态如下:
翻译成文字就是,执行光照的像素必须在光源形状体之内,光源形状之外的像素会被剔除。模板Pass标记的是比光源形状深度更近的像素(光源形状体之外的像素),光源绘制Pass通过模板测试剔除模板Pass标记的像素,然后再通过深度测试找出在光源形状体内的像素,从而提升光照计算效率。
移动端的这种光源模板裁剪(Light Stencil Culling)技术和Siggraph2020的Unity演讲Deferred Shading in Unity URP提及的基于模板的光照计算相似(思想一致,但做法可能不完全一样)。该论文还提出了更加契合光源形状的几何体模拟:
以及对比了各种光源计算方法在PC和移动端的性能,下面是Mali GPU的对比图:
Mali Gpu在使用不同光照渲染技术的性能对比,可见在移动端,基于模板裁剪的光照算法要优于常规和分块算法。
值得一提的是,光源模板裁剪技术结合GPU的Early-Z技术,将极大提升光照渲染性能。而当前主流的移动端GPU都支持Early-Z技术,也为光源模板裁剪的应用奠定了基础。
UE目前实现的光源裁剪算法兴许还有改进的空间,比如背向光源的像素(下图红框所示)其实也是可以不计算的。(但如何快速有效地找到背向光源的像素又是一个问题)
本节主要阐述移动端BasePass涉及的shader,包括VS和PS。先看VS:
- // Engine\Shaders\Private\MobileBasePassVertexShader.usf
-
- (......)
-
- struct FMobileShadingBasePassVSToPS
- {
- FVertexFactoryInterpolantsVSToPS FactoryInterpolants;
- FMobileBasePassInterpolantsVSToPS BasePassInterpolants;
- float4 Position : SV_POSITION;
- };
-
- #define FMobileShadingBasePassVSOutput FMobileShadingBasePassVSToPS
- #define VertexFactoryGetInterpolants VertexFactoryGetInterpolantsVSToPS
-
- // VS主入口.
- void Main(
- FVertexFactoryInput Input
- , out FMobileShadingBasePassVSOutput Output
- #if INSTANCED_STEREO
- , uint InstanceId : SV_InstanceID
- , out uint LayerIndex : SV_RenderTargetArrayIndex
- #elif MOBILE_MULTI_VIEW
- , in uint ViewId : SV_ViewID
- #endif
- )
- {
- // 立体视图模式.
- #if INSTANCED_STEREO
- const uint EyeIndex = GetEyeIndex(InstanceId);
- ResolvedView = ResolveView(EyeIndex);
- LayerIndex = EyeIndex;
- Output.BasePassInterpolants.MultiViewId = float(EyeIndex);
- // 多视图模式.
- #elif MOBILE_MULTI_VIEW
- #if COMPILER_GLSL_ES3_1
- const int MultiViewId = int(ViewId);
- ResolvedView = ResolveView(uint(MultiViewId));
- Output.BasePassInterpolants.MultiViewId = float(MultiViewId);
- #else
- ResolvedView = ResolveView(ViewId);
- Output.BasePassInterpolants.MultiViewId = float(ViewId);
- #endif
- #else
- ResolvedView = ResolveView();
- #endif
-
- // 初始化打包的插值数据.
- #if PACK_INTERPOLANTS
- float4 PackedInterps[NUM_VF_PACKED_INTERPOLANTS];
- UNROLL
- for(int i = 0; i < NUM_VF_PACKED_INTERPOLANTS; ++i)
- {
- PackedInterps[i] = 0;
- }
- #endif
-
- // 处理顶点工厂数据.
- FVertexFactoryIntermediates VFIntermediates = GetVertexFactoryIntermediates(Input);
- float4 WorldPositionExcludingWPO = VertexFactoryGetWorldPosition(Input, VFIntermediates);
- float4 WorldPosition = WorldPositionExcludingWPO;
-
- // 获取材质的顶点数据, 处理坐标等.
- half3x3 TangentToLocal = VertexFactoryGetTangentToLocal(Input, VFIntermediates);
- FMaterialVertexParameters VertexParameters = GetMaterialVertexParameters(Input, VFIntermediates, WorldPosition.xyz, TangentToLocal);
-
- half3 WorldPositionOffset = GetMaterialWorldPositionOffset(VertexParameters);
-
- WorldPosition.xyz += WorldPositionOffset;
-
- float4 RasterizedWorldPosition = VertexFactoryGetRasterizedWorldPosition(Input, VFIntermediates, WorldPosition);
- Output.Position = mul(RasterizedWorldPosition, ResolvedView.TranslatedWorldToClip);
- Output.BasePassInterpolants.PixelPosition = WorldPosition;
-
- #if USE_WORLD_POSITION_EXCLUDING_SHADER_OFFSETS
- Output.BasePassInterpolants.PixelPositionExcludingWPO = WorldPositionExcludingWPO.xyz;
- #endif
-
- // 裁剪面.
- #if USE_PS_CLIP_PLANE
- Output.BasePassInterpolants.OutClipDistance = dot(ResolvedView.GlobalClippingPlane, float4(WorldPosition.xyz - ResolvedView.PreViewTranslation.xyz, 1));
- #endif
-
- // 顶点雾.
- #if USE_VERTEX_FOG
- float4 VertexFog = CalculateHeightFog(WorldPosition.xyz - ResolvedView.TranslatedWorldCameraOrigin);
-
- #if PROJECT_SUPPORT_SKY_ATMOSPHERE && MATERIAL_IS_SKY==0 // Do not apply aerial perpsective on sky materials
- if (ResolvedView.SkyAtmosphereApplyCameraAerialPerspectiveVolume > 0.0f)
- {
- const float OneOverPreExposure = USE_PREEXPOSURE ? ResolvedView.OneOverPreExposure : 1.0f;
- // Sample the aerial perspective (AP). It is also blended under the VertexFog parameter.
- VertexFog = GetAerialPerspectiveLuminanceTransmittanceWithFogOver(
- ResolvedView.RealTimeReflectionCapture, ResolvedView.SkyAtmosphereCameraAerialPerspectiveVolumeSizeAndInvSize,
- Output.Position, WorldPosition.xyz*CM_TO_SKY_UNIT, ResolvedView.TranslatedWorldCameraOrigin*CM_TO_SKY_UNIT,
- View.CameraAerialPerspectiveVolume, View.CameraAerialPerspectiveVolumeSampler,
- ResolvedView.SkyAtmosphereCameraAerialPerspectiveVolumeDepthResolutionInv,
- ResolvedView.SkyAtmosphereCameraAerialPerspectiveVolumeDepthResolution,
- ResolvedView.SkyAtmosphereAerialPerspectiveStartDepthKm,
- ResolvedView.SkyAtmosphereCameraAerialPerspectiveVolumeDepthSliceLengthKm,
- ResolvedView.SkyAtmosphereCameraAerialPerspectiveVolumeDepthSliceLengthKmInv,
- OneOverPreExposure, VertexFog);
- }
- #endif
-
- #if PACK_INTERPOLANTS
- PackedInterps[0] = VertexFog;
- #else
- Output.BasePassInterpolants.VertexFog = VertexFog;
- #endif // PACK_INTERPOLANTS
- #endif // USE_VERTEX_FOG
-
- (......)
-
- // 获取待插值的数据.
- Output.FactoryInterpolants = VertexFactoryGetInterpolants(Input, VFIntermediates, VertexParameters);
-
- Output.BasePassInterpolants.PixelPosition.w = Output.Position.w;
-
- // 打包插值数据.
- #if PACK_INTERPOLANTS
- VertexFactoryPackInterpolants(Output.FactoryInterpolants, PackedInterps);
- #endif // PACK_INTERPOLANTS
-
- #if !OUTPUT_MOBILE_HDR && COMPILER_GLSL_ES3_1
- Output.Position.y *= -1;
- #endif
- }
以上可知,视图实例会根据立体绘制、多视图和普通模式不同而不同处理。支持顶点雾,但默认是关闭的,需要在工程配置内开启。
存在打包插值模式,为了压缩VS到PS之间的插值消耗和带宽。是否开启由宏PACK_INTERPOLANTS
决定,它的定义如下:
- // Engine\Shaders\Private\MobileBasePassCommon.ush
-
- #define PACK_INTERPOLANTS (USE_VERTEX_FOG && NUM_VF_PACKED_INTERPOLANTS > 0 && (ES3_1_PROFILE))
也就是说,只有开启顶点雾、存在顶点工厂打包插值数据且是OpenGLES3.1着色平台才开启打包插值的特性。相比PC端的BasePass的VS,移动端的做了大量的简化,可以简单地认为只是PC端的一个很小的子集。下面继续分析PS:
- // Engine\Shaders\Private\MobileBasePassPixelShader.usf
-
- #include "Common.ush"
-
- // 各类宏定义.
- #define MobileSceneTextures MobileBasePass.SceneTextures
- #define EyeAdaptationStruct MobileBasePass
-
- (......)
-
- // 最接近被渲染对象的场景的预归一化捕获(完全粗糙材质不支持)
- #if !FULLY_ROUGH
- #if HQ_REFLECTIONS
- #define MAX_HQ_REFLECTIONS 3
- TextureCube ReflectionCubemap0;
- SamplerState ReflectionCubemapSampler0;
- TextureCube ReflectionCubemap1;
- SamplerState ReflectionCubemapSampler1;
- TextureCube ReflectionCubemap2;
- SamplerState ReflectionCubemapSampler2;
- // x,y,z - inverted average brightness for 0, 1, 2; w - sky cube texture max mips.
- float4 ReflectionAverageBrigtness;
- float4 ReflectanceMaxValueRGBM;
- float4 ReflectionPositionsAndRadii[MAX_HQ_REFLECTIONS];
- #if ALLOW_CUBE_REFLECTIONS
- float4x4 CaptureBoxTransformArray[MAX_HQ_REFLECTIONS];
- float4 CaptureBoxScalesArray[MAX_HQ_REFLECTIONS];
- #endif
- #endif
- #endif
-
- // 反射球/IBL等接口.
- half4 GetPlanarReflection(float3 WorldPosition, half3 WorldNormal, half Roughness);
- half MobileComputeMixingWeight(half IndirectIrradiance, half AverageBrightness, half Roughness);
- half3 GetLookupVectorForBoxCaptureMobile(half3 ReflectionVector, ...);
- half3 GetLookupVectorForSphereCaptureMobile(half3 ReflectionVector, ...);
- void GatherSpecularIBL(FMaterialPixelParameters MaterialParameters, ...);
- void BlendReflectionCaptures(FMaterialPixelParameters MaterialParameters, ...)
- half3 GetImageBasedReflectionLighting(FMaterialPixelParameters MaterialParameters, ...);
-
- // 其它接口.
- half3 FrameBufferBlendOp(half4 Source);
- bool UseCSM();
- void ApplyPixelDepthOffsetForMobileBasePass(inout FMaterialPixelParameters MaterialParameters, FPixelMaterialInputs PixelMaterialInputs, out float OutDepth);
-
- // 累积动态点光源.
- #if MAX_DYNAMIC_POINT_LIGHTS > 0
- void AccumulateLightingOfDynamicPointLight(
- FMaterialPixelParameters MaterialParameters,
- FMobileShadingModelContext ShadingModelContext,
- FGBufferData GBuffer,
- float4 LightPositionAndInvRadius,
- float4 LightColorAndFalloffExponent,
- float4 SpotLightDirectionAndSpecularScale,
- float4 SpotLightAnglesAndSoftTransitionScaleAndLightShadowType,
- #if SUPPORT_SPOTLIGHTS_SHADOW
- FPCFSamplerSettings Settings,
- float4 SpotLightShadowSharpenAndShadowFadeFraction,
- float4 SpotLightShadowmapMinMax,
- float4x4 SpotLightShadowWorldToShadowMatrix,
- #endif
- inout half3 Color)
- {
- uint LightShadowType = SpotLightAnglesAndSoftTransitionScaleAndLightShadowType.w;
- float FadedShadow = 1.0f;
-
- // 计算聚光灯阴影.
- #if SUPPORT_SPOTLIGHTS_SHADOW
- if ((LightShadowType & LightShadowType_Shadow) == LightShadowType_Shadow)
- {
-
- float4 HomogeneousShadowPosition = mul(float4(MaterialParameters.AbsoluteWorldPosition, 1), SpotLightShadowWorldToShadowMatrix);
- float2 ShadowUVs = HomogeneousShadowPosition.xy / HomogeneousShadowPosition.w;
- if (all(ShadowUVs >= SpotLightShadowmapMinMax.xy && ShadowUVs <= SpotLightShadowmapMinMax.zw))
- {
- // Clamp pixel depth in light space for shadowing opaque, because areas of the shadow depth buffer that weren't rendered to will have been cleared to 1
- // We want to force the shadow comparison to result in 'unshadowed' in that case, regardless of whether the pixel being shaded is in front or behind that plane
- float LightSpacePixelDepthForOpaque = min(HomogeneousShadowPosition.z, 0.99999f);
- Settings.SceneDepth = LightSpacePixelDepthForOpaque;
- Settings.TransitionScale = SpotLightAnglesAndSoftTransitionScaleAndLightShadowType.z;
- half Shadow = MobileShadowPCF(ShadowUVs, Settings);
- Shadow = saturate((Shadow - 0.5) * SpotLightShadowSharpenAndShadowFadeFraction.x + 0.5);
- FadedShadow = lerp(1.0f, Square(Shadow), SpotLightShadowSharpenAndShadowFadeFraction.y);
- }
- }
- #endif
- // 计算光照.
- if ((LightShadowType & ValidLightType) != 0)
- {
- float3 ToLight = LightPositionAndInvRadius.xyz - MaterialParameters.AbsoluteWorldPosition;
- float DistanceSqr = dot(ToLight, ToLight);
- float3 L = ToLight * rsqrt(DistanceSqr);
- half3 PointH = normalize(MaterialParameters.CameraVector + L);
- half PointNoL = max(0, dot(MaterialParameters.WorldNormal, L));
- half PointNoH = max(0, dot(MaterialParameters.WorldNormal, PointH));
- // 计算光源的衰减.
- float Attenuation;
- if (LightColorAndFalloffExponent.w == 0)
- {
- // Sphere falloff (technically just 1/d2 but this avoids inf)
- Attenuation = 1 / (DistanceSqr + 1);
- float LightRadiusMask = Square(saturate(1 - Square(DistanceSqr * (LightPositionAndInvRadius.w * LightPositionAndInvRadius.w))));
- Attenuation *= LightRadiusMask;
- }
- else
- {
- Attenuation = RadialAttenuation(ToLight * LightPositionAndInvRadius.w, LightColorAndFalloffExponent.w);
- }
- #if PROJECT_MOBILE_ENABLE_MOVABLE_SPOTLIGHTS
- if ((LightShadowType & LightShadowType_SpotLight) == LightShadowType_SpotLight)
- {
- Attenuation *= SpotAttenuation(L, -SpotLightDirectionAndSpecularScale.xyz, SpotLightAnglesAndSoftTransitionScaleAndLightShadowType.xy) * FadedShadow;
- }
- #endif
- // 累加光照结果.
- #if !FULLY_ROUGH
- FMobileDirectLighting Lighting = MobileIntegrateBxDF(ShadingModelContext, GBuffer, PointNoL, MaterialParameters.CameraVector, PointH, PointNoH);
- Color += min(65000.0, (Attenuation) * LightColorAndFalloffExponent.rgb * (1.0 / PI) * (Lighting.Diffuse + Lighting.Specular * SpotLightDirectionAndSpecularScale.w));
- #else
- Color += (Attenuation * PointNoL) * LightColorAndFalloffExponent.rgb * (1.0 / PI) * ShadingModelContext.DiffuseColor;
- #endif
- }
- }
- #endif
- (......)
- // 计算非直接光照.
- half ComputeIndirect(VTPageTableResult LightmapVTPageTableResult, FVertexFactoryInterpolantsVSToPS Interpolants, float3 DiffuseDir, FMobileShadingModelContext ShadingModelContext, out half IndirectIrradiance, out half3 Color)
- {
- //To keep IndirectLightingCache conherence with PC, initialize the IndirectIrradiance to zero.
- IndirectIrradiance = 0;
- Color = 0;
- // 非直接漫反射.
- #if LQ_TEXTURE_LIGHTMAP
- float2 LightmapUV0, LightmapUV1;
- uint LightmapDataIndex;
- GetLightMapCoordinates(Interpolants, LightmapUV0, LightmapUV1, LightmapDataIndex);
- half4 LightmapColor = GetLightMapColorLQ(LightmapVTPageTableResult, LightmapUV0, LightmapUV1, LightmapDataIndex, DiffuseDir);
- Color += LightmapColor.rgb * ShadingModelContext.DiffuseColor * View.IndirectLightingColorScale;
- IndirectIrradiance = LightmapColor.a;
- #elif CACHED_POINT_INDIRECT_LIGHTING
- #if MATERIALBLENDING_MASKED || MATERIALBLENDING_SOLID
- // 将法线应用到半透明物体.
- FThreeBandSHVectorRGB PointIndirectLighting;
- PointIndirectLighting.R.V0 = IndirectLightingCache.IndirectLightingSHCoefficients0[0];
- PointIndirectLighting.R.V1 = IndirectLightingCache.IndirectLightingSHCoefficients1[0];
- PointIndirectLighting.R.V2 = IndirectLightingCache.IndirectLightingSHCoefficients2[0];
- PointIndirectLighting.G.V0 = IndirectLightingCache.IndirectLightingSHCoefficients0[1];
- PointIndirectLighting.G.V1 = IndirectLightingCache.IndirectLightingSHCoefficients1[1];
- PointIndirectLighting.G.V2 = IndirectLightingCache.IndirectLightingSHCoefficients2[1];
- PointIndirectLighting.B.V0 = IndirectLightingCache.IndirectLightingSHCoefficients0[2];
- PointIndirectLighting.B.V1 = IndirectLightingCache.IndirectLightingSHCoefficients1[2];
- PointIndirectLighting.B.V2 = IndirectLightingCache.IndirectLightingSHCoefficients2[2];
- FThreeBandSHVector DiffuseTransferSH = CalcDiffuseTransferSH3(DiffuseDir, 1);
- // 计算加入了法线影响的漫反射光照.
- half3 DiffuseGI = max(half3(0, 0, 0), DotSH3(PointIndirectLighting, DiffuseTransferSH));
- IndirectIrradiance = Luminance(DiffuseGI);
- Color += ShadingModelContext.DiffuseColor * DiffuseGI * View.IndirectLightingColorScale;
- #else
- // 半透明使用无方向(Non-directional), 漫反射被打包在xyz, 已经在cpu端除了PI和SH漫反射.
- half3 PointIndirectLighting = IndirectLightingCache.IndirectLightingSHSingleCoefficient.rgb;
- half3 DiffuseGI = PointIndirectLighting;
- IndirectIrradiance = Luminance(DiffuseGI);
- Color += ShadingModelContext.DiffuseColor * DiffuseGI * View.IndirectLightingColorScale;
- #endif
- #endif
- return IndirectIrradiance;
- }
- // PS主入口.
- PIXELSHADER_EARLYDEPTHSTENCIL
- void Main(
- FVertexFactoryInterpolantsVSToPS Interpolants
- , FMobileBasePassInterpolantsVSToPS BasePassInterpolants
- , in float4 SvPosition : SV_Position
- OPTIONAL_IsFrontFace
- , out half4 OutColor : SV_Target0
- #if DEFERRED_SHADING_PATH
- , out half4 OutGBufferA : SV_Target1
- , out half4 OutGBufferB : SV_Target2
- , out half4 OutGBufferC : SV_Target3
- #endif
- #if USE_SCENE_DEPTH_AUX
- , out float OutSceneDepthAux : SV_Target4
- #endif
- #if OUTPUT_PIXEL_DEPTH_OFFSET
- , out float OutDepth : SV_Depth
- #endif
- )
- {
- #if MOBILE_MULTI_VIEW
- ResolvedView = ResolveView(uint(BasePassInterpolants.MultiViewId));
- #else
- ResolvedView = ResolveView();
- #endif
- #if USE_PS_CLIP_PLANE
- clip(BasePassInterpolants.OutClipDistance);
- #endif
- // 解压打包的插值数据.
- #if PACK_INTERPOLANTS
- float4 PackedInterpolants[NUM_VF_PACKED_INTERPOLANTS];
- VertexFactoryUnpackInterpolants(Interpolants, PackedInterpolants);
- #endif
- #if COMPILER_GLSL_ES3_1 && !OUTPUT_MOBILE_HDR && !MOBILE_EMULATION
- // LDR Mobile needs screen vertical flipped
- SvPosition.y = ResolvedView.BufferSizeAndInvSize.y - SvPosition.y - 1;
- #endif
- // 获取材质的像素属性.
- FMaterialPixelParameters MaterialParameters = GetMaterialPixelParameters(Interpolants, SvPosition);
- FPixelMaterialInputs PixelMaterialInputs;
- {
- float4 ScreenPosition = SvPositionToResolvedScreenPosition(SvPosition);
- float3 WorldPosition = BasePassInterpolants.PixelPosition.xyz;
- float3 WorldPositionExcludingWPO = BasePassInterpolants.PixelPosition.xyz;
- #if USE_WORLD_POSITION_EXCLUDING_SHADER_OFFSETS
- WorldPositionExcludingWPO = BasePassInterpolants.PixelPositionExcludingWPO;
- #endif
- CalcMaterialParametersEx(MaterialParameters, PixelMaterialInputs, SvPosition, ScreenPosition, bIsFrontFace, WorldPosition, WorldPositionExcludingWPO);
- #if FORCE_VERTEX_NORMAL
- // Quality level override of material's normal calculation, can be used to avoid normal map reads etc.
- MaterialParameters.WorldNormal = MaterialParameters.TangentToWorld[2];
- MaterialParameters.ReflectionVector = ReflectionAboutCustomWorldNormal(MaterialParameters, MaterialParameters.WorldNormal, false);
- #endif
- }
-
- // 像素深度偏移.
- #if OUTPUT_PIXEL_DEPTH_OFFSET
- ApplyPixelDepthOffsetForMobileBasePass(MaterialParameters, PixelMaterialInputs, OutDepth);
- #endif
-
- // Mask材质.
- #if !EARLY_Z_PASS_ONLY_MATERIAL_MASKING
- //Clip if the blend mode requires it.
- GetMaterialCoverageAndClipping(MaterialParameters, PixelMaterialInputs);
- #endif
-
- // 计算并缓存GBuffer数据, 防止后续多次采用纹理.
- FGBufferData GBuffer = (FGBufferData)0;
- GBuffer.WorldNormal = MaterialParameters.WorldNormal;
- GBuffer.BaseColor = GetMaterialBaseColor(PixelMaterialInputs);
- GBuffer.Metallic = GetMaterialMetallic(PixelMaterialInputs);
- GBuffer.Specular = GetMaterialSpecular(PixelMaterialInputs);
- GBuffer.Roughness = GetMaterialRoughness(PixelMaterialInputs);
- GBuffer.ShadingModelID = GetMaterialShadingModel(PixelMaterialInputs);
- half MaterialAO = GetMaterialAmbientOcclusion(PixelMaterialInputs);
-
- // 应用AO.
- #if APPLY_AO
- half4 GatheredAmbientOcclusion = Texture2DSample(AmbientOcclusionTexture, AmbientOcclusionSampler, SvPositionToBufferUV(SvPosition));
-
- MaterialAO *= GatheredAmbientOcclusion.r;
- #endif
-
- GBuffer.GBufferAO = MaterialAO;
-
- // 由于IEEE 754 (FP16)可表示的最小标准值是2^-24 = 5.96e-8, 而后面的粗糙度涉及到1.0 / Roughness^4的计算, 所以为了防止除零错误, 需保证Roughness^4 >= 5.96e-8, 此处直接Clamp粗糙度到0.015625(0.015625^4 = 5.96e-8).
- // 另外, 为了匹配PC端的延迟渲染(粗糙度存储在8位的值), 因此也自动Clamp到1.0.
- GBuffer.Roughness = max(0.015625, GetMaterialRoughness(PixelMaterialInputs));
-
- // 初始化移动端着色模型上下文FMobileShadingModelContext.
- FMobileShadingModelContext ShadingModelContext = (FMobileShadingModelContext)0;
- ShadingModelContext.Opacity = GetMaterialOpacity(PixelMaterialInputs);
-
- // 薄层透明度物
- #if MATERIAL_SHADINGMODEL_THIN_TRANSLUCENT
- (......)
- #endif
-
- half3 Color = 0;
-
- // 自定义数据.
- half CustomData0 = GetMaterialCustomData0(MaterialParameters);
- half CustomData1 = GetMaterialCustomData1(MaterialParameters);
- InitShadingModelContext(ShadingModelContext, GBuffer, MaterialParameters.SvPosition, MaterialParameters.CameraVector, CustomData0, CustomData1);
- float3 DiffuseDir = MaterialParameters.WorldNormal;
-
- // 头发模型.
- #if MATERIAL_SHADINGMODEL_HAIR
- (......)
- #endif
-
- // 光照图虚拟纹理.
- VTPageTableResult LightmapVTPageTableResult = (VTPageTableResult)0.0f;
- #if LIGHTMAP_VT_ENABLED
- {
- float2 LightmapUV0, LightmapUV1;
- uint LightmapDataIndex;
- GetLightMapCoordinates(Interpolants, LightmapUV0, LightmapUV1, LightmapDataIndex);
- LightmapVTPageTableResult = LightmapGetVTSampleInfo(LightmapUV0, LightmapDataIndex, SvPosition.xy);
- }
- #endif
-
- #if LIGHTMAP_VT_ENABLED
- // This must occur after CalcMaterialParameters(), which is required to initialize the VT feedback mechanism
- // Lightmap request is always the first VT sample in the shader
- StoreVirtualTextureFeedback(MaterialParameters.VirtualTextureFeedback, 0, LightmapVTPageTableResult.PackedRequest);
- #endif
-
- // 计算非直接光.
- half IndirectIrradiance;
- half3 IndirectColor;
- ComputeIndirect(LightmapVTPageTableResult, Interpolants, DiffuseDir, ShadingModelContext, IndirectIrradiance, IndirectColor);
- Color += IndirectColor;
-
- // 预计算的阴影图.
- half Shadow = GetPrimaryPrecomputedShadowMask(LightmapVTPageTableResult, Interpolants).r;
-
- #if DEFERRED_SHADING_PATH
- float4 OutGBufferD;
- float4 OutGBufferE;
- float4 OutGBufferF;
- float4 OutGBufferVelocity = 0;
-
- GBuffer.IndirectIrradiance = IndirectIrradiance;
- GBuffer.PrecomputedShadowFactors.r = Shadow;
-
- // 编码GBuffer数据.
- EncodeGBuffer(GBuffer, OutGBufferA, OutGBufferB, OutGBufferC, OutGBufferD, OutGBufferE, OutGBufferF, OutGBufferVelocity);
- #else
-
- #if !MATERIAL_SHADINGMODEL_UNLIT
-
- // 天光.
- #if ENABLE_SKY_LIGHT
- half3 SkyDiffuseLighting = GetSkySHDiffuseSimple(MaterialParameters.WorldNormal);
- half3 DiffuseLookup = SkyDiffuseLighting * ResolvedView.SkyLightColor.rgb;
- IndirectIrradiance += Luminance(DiffuseLookup);
- #endif
-
- Color *= MaterialAO;
- IndirectIrradiance *= MaterialAO;
-
- float ShadowPositionZ = 0;
- #if DIRECTIONAL_LIGHT_CSM && !MATERIAL_SHADINGMODEL_SINGLELAYERWATER
- // CSM阴影.
- if (UseCSM())
- {
- half ShadowMap = MobileDirectionalLightCSM(MaterialParameters.ScreenPosition.xy, MaterialParameters.ScreenPosition.w, ShadowPositionZ);
- #if ALLOW_STATIC_LIGHTING
- Shadow = min(ShadowMap, Shadow);
- #else
- Shadow = ShadowMap;
- #endif
- }
- #endif /* DIRECTIONAL_LIGHT_CSM */
-
- // 距离场阴影.
- #if APPLY_DISTANCE_FIELD
- if (ShadowPositionZ == 0)
- {
- Shadow = Texture2DSample(MobileBasePass.ScreenSpaceShadowMaskTexture, MobileBasePass.ScreenSpaceShadowMaskSampler, SvPositionToBufferUV(SvPosition)).x;
- }
- #endif
-
- half NoL = max(0, dot(MaterialParameters.WorldNormal, MobileDirectionalLight.DirectionalLightDirectionAndShadowTransition.xyz));
- half3 H = normalize(MaterialParameters.CameraVector + MobileDirectionalLight.DirectionalLightDirectionAndShadowTransition.xyz);
- half NoH = max(0, dot(MaterialParameters.WorldNormal, H));
-
- // 平行光 + IBL
- #if FULLY_ROUGH
- Color += (Shadow * NoL) * MobileDirectionalLight.DirectionalLightColor.rgb * ShadingModelContext.DiffuseColor;
- #else
- FMobileDirectLighting Lighting = MobileIntegrateBxDF(ShadingModelContext, GBuffer, NoL, MaterialParameters.CameraVector, H, NoH);
- // MobileDirectionalLight.DirectionalLightDistanceFadeMADAndSpecularScale.z保存了平行光的SpecularScale.
- Color += (Shadow) * MobileDirectionalLight.DirectionalLightColor.rgb * (Lighting.Diffuse + Lighting.Specular * MobileDirectionalLight.DirectionalLightDistanceFadeMADAndSpecularScale.z);
-
- // 头发着色.
- #if !(MATERIAL_SINGLE_SHADINGMODEL && MATERIAL_SHADINGMODEL_HAIR)
- (......)
- #endif
- #endif /* FULLY_ROUGH */
-
- // 局部光源, 最多4个.
- #if MAX_DYNAMIC_POINT_LIGHTS > 0 && !MATERIAL_SHADINGMODEL_SINGLELAYERWATER
-
- if(NumDynamicPointLights > 0)
- {
-
- #if SUPPORT_SPOTLIGHTS_SHADOW
- FPCFSamplerSettings Settings;
- Settings.ShadowDepthTexture = DynamicSpotLightShadowTexture;
- Settings.ShadowDepthTextureSampler = DynamicSpotLightShadowSampler;
- Settings.ShadowBufferSize = DynamicSpotLightShadowBufferSize;
- Settings.bSubsurface = false;
- Settings.bTreatMaxDepthUnshadowed = false;
- Settings.DensityMulConstant = 0;
- Settings.ProjectionDepthBiasParameters = 0;
- #endif
-
- AccumulateLightingOfDynamicPointLight(MaterialParameters, ...);
-
- if (MAX_DYNAMIC_POINT_LIGHTS > 1 && NumDynamicPointLights > 1)
- {
- AccumulateLightingOfDynamicPointLight(MaterialParameters, ...);
-
- if (MAX_DYNAMIC_POINT_LIGHTS > 2 && NumDynamicPointLights > 2)
- {
- AccumulateLightingOfDynamicPointLight(MaterialParameters, ...);
-
- if (MAX_DYNAMIC_POINT_LIGHTS > 3 && NumDynamicPointLights > 3)
- {
- AccumulateLightingOfDynamicPointLight(MaterialParameters, ...);
- }
- }
- }
- }
-
- #endif
-
- // 天空光.
- #if ENABLE_SKY_LIGHT
- #if MATERIAL_TWOSIDED && LQ_TEXTURE_LIGHTMAP
- if (NoL == 0)
- {
- #endif
-
- #if MATERIAL_SHADINGMODEL_SINGLELAYERWATER
- ShadingModelContext.WaterDiffuseIndirectLuminance += SkyDiffuseLighting;
- #endif
- Color += SkyDiffuseLighting * half3(ResolvedView.SkyLightColor.rgb) * ShadingModelContext.DiffuseColor * MaterialAO;
- #if MATERIAL_TWOSIDED && LQ_TEXTURE_LIGHTMAP
- }
- #endif
- #endif
-
- #endif /* !MATERIAL_SHADINGMODEL_UNLIT */
-
- #if MATERIAL_SHADINGMODEL_SINGLELAYERWATER
- (......)
- #endif // MATERIAL_SHADINGMODEL_SINGLELAYERWATER
-
- #endif// DEFERRED_SHADING_PATH
-
- // 处理顶点雾.
- half4 VertexFog = half4(0, 0, 0, 1);
- #if USE_VERTEX_FOG
- #if PACK_INTERPOLANTS
- VertexFog = PackedInterpolants[0];
- #else
- VertexFog = BasePassInterpolants.VertexFog;
- #endif
- #endif
-
- // 自发光.
- half3 Emissive = GetMaterialEmissive(PixelMaterialInputs);
- #if MATERIAL_SHADINGMODEL_THIN_TRANSLUCENT
- Emissive *= TopMaterialCoverage;
- #endif
- Color += Emissive;
-
- #if !MATERIAL_SHADINGMODEL_UNLIT && MOBILE_EMULATION
- Color = lerp(Color, ShadingModelContext.DiffuseColor, ResolvedView.UnlitViewmodeMask);
- #endif
-
- // 组合雾颜色到输出颜色.
- #if MATERIALBLENDING_ALPHACOMPOSITE || MATERIAL_SHADINGMODEL_SINGLELAYERWATER
- OutColor = half4(Color * VertexFog.a + VertexFog.rgb * ShadingModelContext.Opacity, ShadingModelContext.Opacity);
- #elif MATERIALBLENDING_ALPHAHOLDOUT
- // not implemented for holdout
- OutColor = half4(Color * VertexFog.a + VertexFog.rgb * ShadingModelContext.Opacity, ShadingModelContext.Opacity);
- #elif MATERIALBLENDING_TRANSLUCENT
- OutColor = half4(Color * VertexFog.a + VertexFog.rgb, ShadingModelContext.Opacity);
- #elif MATERIALBLENDING_ADDITIVE
- OutColor = half4(Color * (VertexFog.a * ShadingModelContext.Opacity.x), 0.0f);
- #elif MATERIALBLENDING_MODULATE
- half3 FoggedColor = lerp(half3(1, 1, 1), Color, VertexFog.aaa * VertexFog.aaa);
- OutColor = half4(FoggedColor, ShadingModelContext.Opacity);
- #else
- OutColor.rgb = Color * VertexFog.a + VertexFog.rgb;
-
- #if !MATERIAL_USE_ALPHA_TO_COVERAGE
- // Scene color alpha is not used yet so we set it to 1
- OutColor.a = 1.0;
-
- #if OUTPUT_MOBILE_HDR
- // Store depth in FP16 alpha. This depth value can be fetched during translucency or sampled in post-processing
- OutColor.a = SvPosition.z;
- #endif
- #else
- half MaterialOpacityMask = GetMaterialMaskInputRaw(PixelMaterialInputs);
- OutColor.a = GetMaterialMask(PixelMaterialInputs) / max(abs(ddx(MaterialOpacityMask)) + abs(ddy(MaterialOpacityMask)), 0.0001f) + 0.5f;
- #endif
- #endif
-
- #if !MATERIALBLENDING_MODULATE && USE_PREEXPOSURE
- OutColor.rgb *= ResolvedView.PreExposure;
- #endif
-
- #if MATERIAL_IS_SKY
- OutColor.rgb = min(OutColor.rgb, Max10BitsFloat.xxx * 0.5f);
- #endif
-
- #if USE_SCENE_DEPTH_AUX
- OutSceneDepthAux = SvPosition.z;
- #endif
-
- // 处理颜色的alpha.
- #if USE_EDITOR_COMPOSITING && (MOBILE_EMULATION)
- // Editor primitive depth testing
- OutColor.a = 1.0;
- #if MATERIALBLENDING_MASKED
- // some material might have an opacity value
- OutColor.a = GetMaterialMaskInputRaw(PixelMaterialInputs);
- #endif
- clip(OutColor.a - GetMaterialOpacityMaskClipValue());
- #else
- #if OUTPUT_GAMMA_SPACE
- OutColor.rgb = sqrt(OutColor.rgb);
- #endif
- #endif
-
- #if NUM_VIRTUALTEXTURE_SAMPLES || LIGHTMAP_VT_ENABLED
- FinalizeVirtualTextureFeedback(
- MaterialParameters.VirtualTextureFeedback,
- MaterialParameters.SvPosition,
- ShadingModelContext.Opacity,
- View.FrameNumber,
- View.VTFeedbackBuffer
- );
- #endif
- }
移动端的BasePassPS的处理过程比较复杂,步骤繁多,主要有:解压插值数据,获取并计算材质属性,计算并缓村GBuffer,处理或调整GBuffer数据,计算前向渲染分支的光照(平行光、局部光),计算距离场、CSM等阴影,计算天空光,处理静态光照、非直接光和IBL,计算雾效,以及处理水体、头发、薄层透明度等特殊着色模型。
由于标准16位浮点数(FP16)可表示的最小值是1.0224=5.96⋅10−81.0224=5.96⋅10−8,而后续的光照计算涉及到粗糙度的4次方运算(1.0Roughness41.0Roughness4),为了防止除零错误,需要将粗糙度截取到0.0156250.015625(0.0156254=5.96⋅10−80.0156254=5.96⋅10−8)。
GBuffer.Roughness = max(0.015625, GetMaterialRoughness(PixelMaterialInputs));
这也警示我们在开发移动端的渲染特性时,需要格外注意和把控数据精度,否则在低端设备经常由于数据精度不足而出现各种奇葩的画面异常。
虽然上面的代码较多,但由很多宏控制着,实际渲染单个材质所需的代码可能只是其中的很小的一个子集。比如说,默认支持4个局部光源,但如果在工程配置(下图)中可以设为2或更少,则实际执行的光源指令少了很多。
如果是前向渲染分支,则GBuffer的很多处理将被忽略;如果是延迟渲染分支,则平行光、局部光源的计算将被忽略,由延迟渲染Pass的shader执行。
下面对重要接口EncodeGBuffer
做剖析:
- void EncodeGBuffer(
- FGBufferData GBuffer,
- out float4 OutGBufferA,
- out float4 OutGBufferB,
- out float4 OutGBufferC,
- out float4 OutGBufferD,
- out float4 OutGBufferE,
- out float4 OutGBufferVelocity,
- float QuantizationBias = 0 // -0.5 to 0.5 random float. Used to bias quantization.
- )
- {
- if (GBuffer.ShadingModelID == SHADINGMODELID_UNLIT)
- {
- OutGBufferA = 0;
- SetGBufferForUnlit(OutGBufferB);
- OutGBufferC = 0;
- OutGBufferD = 0;
- OutGBufferE = 0;
- }
- else
- {
- // GBufferA: 八面体压缩后的法线, 预计算阴影因子, 逐物体数据.
- #if MOBILE_DEFERRED_SHADING
- OutGBufferA.rg = UnitVectorToOctahedron( normalize(GBuffer.WorldNormal) ) * 0.5f + 0.5f;
- OutGBufferA.b = GBuffer.PrecomputedShadowFactors.x;
- OutGBufferA.a = GBuffer.PerObjectGBufferData;
- #else
- (......)
- #endif
-
- // GBufferB: 金属度, 高光度, 粗糙度, 着色模型, 其它Mask.
- OutGBufferB.r = GBuffer.Metallic;
- OutGBufferB.g = GBuffer.Specular;
- OutGBufferB.b = GBuffer.Roughness;
- OutGBufferB.a = EncodeShadingModelIdAndSelectiveOutputMask(GBuffer.ShadingModelID, GBuffer.SelectiveOutputMask);
-
- // GBufferC: 基础色, AO或非直接光.
- OutGBufferC.rgb = EncodeBaseColor( GBuffer.BaseColor );
-
- #if ALLOW_STATIC_LIGHTING
- // No space for AO. Multiply IndirectIrradiance by AO instead of storing.
- OutGBufferC.a = EncodeIndirectIrradiance(GBuffer.IndirectIrradiance * GBuffer.GBufferAO) + QuantizationBias * (1.0 / 255.0);
- #else
- OutGBufferC.a = GBuffer.GBufferAO;
- #endif
-
- OutGBufferD = GBuffer.CustomData;
- OutGBufferE = GBuffer.PrecomputedShadowFactors;
- }
-
- #if WRITES_VELOCITY_TO_GBUFFER
- OutGBufferVelocity = GBuffer.Velocity;
- #else
- OutGBufferVelocity = 0;
- #endif
- }
在默认光照模型(DefaultLit)下,BasePass输出的结果有以下几种纹理:
移动端延迟光照的VS和PC端是一样的,都是DeferredLightVertexShaders.usf,但PS不一样,用的是MobileDeferredShading.usf。由于VS和PC一样,且没有特殊的操作,此处就忽略,如果有兴趣的同学可以看第五篇的小节5.5.3.1 DeferredLightVertexShader。
下面直接分析PS代码:
- // Engine\Shaders\Private\MobileDeferredShading.usf
-
- (......)
-
- // 移动端光源数据结构体.
- struct FMobileLightData
- {
- float3 Position;
- float InvRadius;
- float3 Color;
- float FalloffExponent;
- float3 Direction;
- float2 SpotAngles;
- float SourceRadius;
- float SpecularScale;
- bool bInverseSquared;
- bool bSpotLight;
- };
-
- // 获取GBuffer数据.
- void FetchGBuffer(in float2 UV, out float4 GBufferA, out float4 GBufferB, out float4 GBufferC, out float4 GBufferD, out float SceneDepth)
- {
- // Vulkan的子pass获取数据.
- #if VULKAN_PROFILE
- GBufferA = VulkanSubpassFetch1();
- GBufferB = VulkanSubpassFetch2();
- GBufferC = VulkanSubpassFetch3();
- GBufferD = 0;
- SceneDepth = ConvertFromDeviceZ(VulkanSubpassDepthFetch());
- // Metal的子pass获取数据.
- #elif METAL_PROFILE
- GBufferA = SubpassFetchRGBA_1();
- GBufferB = SubpassFetchRGBA_2();
- GBufferC = SubpassFetchRGBA_3();
- GBufferD = 0;
- SceneDepth = ConvertFromDeviceZ(SubpassFetchR_4());
- // 其它平台(DX, OpenGL)的子pass获取数据.
- #else
- GBufferA = Texture2DSampleLevel(MobileSceneTextures.GBufferATexture, MobileSceneTextures.GBufferATextureSampler, UV, 0);
- GBufferB = Texture2DSampleLevel(MobileSceneTextures.GBufferBTexture, MobileSceneTextures.GBufferBTextureSampler, UV, 0);
- GBufferC = Texture2DSampleLevel(MobileSceneTextures.GBufferCTexture, MobileSceneTextures.GBufferCTextureSampler, UV, 0);
- GBufferD = 0;
- SceneDepth = ConvertFromDeviceZ(Texture2DSampleLevel(MobileSceneTextures.SceneDepthTexture, MobileSceneTextures.SceneDepthTextureSampler, UV, 0).r);
- #endif
- }
-
- // 解压GBuffer数据.
- FGBufferData DecodeGBufferMobile(
- float4 InGBufferA,
- float4 InGBufferB,
- float4 InGBufferC,
- float4 InGBufferD)
- {
- FGBufferData GBuffer;
- GBuffer.WorldNormal = OctahedronToUnitVector( InGBufferA.xy * 2.0f - 1.0f );
- GBuffer.PrecomputedShadowFactors = InGBufferA.z;
- GBuffer.PerObjectGBufferData = InGBufferA.a;
- GBuffer.Metallic = InGBufferB.r;
- GBuffer.Specular = InGBufferB.g;
- GBuffer.Roughness = max(0.015625, InGBufferB.b);
- // Note: must match GetShadingModelId standalone function logic
- // Also Note: SimpleElementPixelShader directly sets SV_Target2 ( GBufferB ) to indicate unlit.
- // An update there will be required if this layout changes.
- GBuffer.ShadingModelID = DecodeShadingModelId(InGBufferB.a);
- GBuffer.SelectiveOutputMask = DecodeSelectiveOutputMask(InGBufferB.a);
- GBuffer.BaseColor = DecodeBaseColor(InGBufferC.rgb);
- #if ALLOW_STATIC_LIGHTING
- GBuffer.GBufferAO = 1;
- GBuffer.IndirectIrradiance = DecodeIndirectIrradiance(InGBufferC.a);
- #else
- GBuffer.GBufferAO = InGBufferC.a;
- GBuffer.IndirectIrradiance = 1;
- #endif
- GBuffer.CustomData = HasCustomGBufferData(GBuffer.ShadingModelID) ? InGBufferD : 0;
- return GBuffer;
- }
-
- // 直接光照.
- half3 GetDirectLighting(
- FMobileLightData LightData,
- FMobileShadingModelContext ShadingModelContext,
- FGBufferData GBuffer,
- float3 WorldPosition,
- half3 CameraVector)
- {
- half3 DirectLighting = 0;
-
- float3 ToLight = LightData.Position - WorldPosition;
- float DistanceSqr = dot(ToLight, ToLight);
- float3 L = ToLight * rsqrt(DistanceSqr);
-
- // 光源衰减.
- float Attenuation = 0.0;
- if (LightData.bInverseSquared)
- {
- // Sphere falloff (technically just 1/d2 but this avoids inf)
- Attenuation = 1.0f / (DistanceSqr + 1.0f);
- Attenuation *= Square(saturate(1 - Square(DistanceSqr * Square(LightData.InvRadius))));
- }
- else
- {
- Attenuation = RadialAttenuation(ToLight * LightData.InvRadius, LightData.FalloffExponent);
- }
-
- // 聚光灯衰减.
- if (LightData.bSpotLight)
- {
- Attenuation *= SpotAttenuation(L, -LightData.Direction, LightData.SpotAngles);
- }
-
- // 如果衰减不为0, 则计算直接光照.
- if (Attenuation > 0.0)
- {
- half3 H = normalize(CameraVector + L);
- half NoL = max(0.0, dot(GBuffer.WorldNormal, L));
- half NoH = max(0.0, dot(GBuffer.WorldNormal, H));
- FMobileDirectLighting Lighting = MobileIntegrateBxDF(ShadingModelContext, GBuffer, NoL, CameraVector, H, NoH);
- DirectLighting = (Lighting.Diffuse + Lighting.Specular * LightData.SpecularScale) * (LightData.Color * (1.0 / PI) * Attenuation);
- }
- return DirectLighting;
- }
-
- // 光照函数.
- half ComputeLightFunctionMultiplier(float3 WorldPosition);
- // 使用光网格添加局部光照, 不支持动态阴影, 因为需要逐光源阴影图.
- half3 GetLightGridLocalLighting(const FCulledLightsGridData InLightGridData, ...);
-
- // 平行光的PS主入口.
- void MobileDirectLightPS(
- noperspective float4 UVAndScreenPos : TEXCOORD0,
- float4 SvPosition : SV_POSITION,
- out half4 OutColor : SV_Target0)
- {
- // 恢复(读取)GBuffer数据.
- FGBufferData GBuffer = (FGBufferData)0;
- float SceneDepth = 0;
- {
- float4 GBufferA = 0;
- float4 GBufferB = 0;
- float4 GBufferC = 0;
- float4 GBufferD = 0;
- FetchGBuffer(UVAndScreenPos.xy, GBufferA, GBufferB, GBufferC, GBufferD, SceneDepth);
- GBuffer = DecodeGBufferMobile(GBufferA, GBufferB, GBufferC, GBufferD);
- }
-
- // 计算基础向量.
- float2 ScreenPos = UVAndScreenPos.zw;
- float3 WorldPosition = mul(float4(ScreenPos * SceneDepth, SceneDepth, 1), View.ScreenToWorld).xyz;
- half3 CameraVector = normalize(View.WorldCameraOrigin - WorldPosition);
- half NoV = max(0, dot(GBuffer.WorldNormal, CameraVector));
- half3 ReflectionVector = GBuffer.WorldNormal * (NoV * 2.0) - CameraVector;
-
- half3 Color = 0;
- // Check movable light param to determine if we should be using precomputed shadows
- half Shadow = LightFunctionParameters2.z > 0.0f ? 1.0f : GBuffer.PrecomputedShadowFactors.r;
-
- // CSM阴影.
- #if APPLY_CSM
- float ShadowPositionZ = 0;
- float4 ScreenPosition = SvPositionToScreenPosition(float4(SvPosition.xyz,SceneDepth));
- float ShadowMap = MobileDirectionalLightCSM(ScreenPosition.xy, SceneDepth, ShadowPositionZ);
- Shadow = min(ShadowMap, Shadow);
- #endif
-
- // 着色模型上下文.
- FMobileShadingModelContext ShadingModelContext = (FMobileShadingModelContext)0;
- {
- half DielectricSpecular = 0.08 * GBuffer.Specular;
- ShadingModelContext.DiffuseColor = GBuffer.BaseColor - GBuffer.BaseColor * GBuffer.Metallic; // 1 mad
- ShadingModelContext.SpecularColor = (DielectricSpecular - DielectricSpecular * GBuffer.Metallic) + GBuffer.BaseColor * GBuffer.Metallic; // 2 mad
- // 计算环境的BRDF.
- ShadingModelContext.SpecularColor = GetEnvBRDF(ShadingModelContext.SpecularColor, GBuffer.Roughness, NoV);
- }
-
- // 局部光源.
- float2 LocalPosition = SvPosition.xy - View.ViewRectMin.xy;
- uint GridIndex = ComputeLightGridCellIndex(uint2(LocalPosition.x, LocalPosition.y), SceneDepth);
- // 分簇光源
- #if USE_CLUSTERED
- {
- const uint EyeIndex = 0;
- const FCulledLightsGridData CulledLightGridData = GetCulledLightsGrid(GridIndex, EyeIndex);
- Color += GetLightGridLocalLighting(CulledLightGridData, ShadingModelContext, GBuffer, WorldPosition, CameraVector, EyeIndex, 0);
- }
- #endif
-
- // 计算平行光.
- half NoL = max(0, dot(GBuffer.WorldNormal, MobileDirectionalLight.DirectionalLightDirectionAndShadowTransition.xyz));
- half3 H = normalize(CameraVector + MobileDirectionalLight.DirectionalLightDirectionAndShadowTransition.xyz);
- half NoH = max(0, dot(GBuffer.WorldNormal, H));
- FMobileDirectLighting Lighting;
- Lighting.Specular = ShadingModelContext.SpecularColor * CalcSpecular(GBuffer.Roughness, NoH);
- Lighting.Diffuse = ShadingModelContext.DiffuseColor;
- Color += (Shadow * NoL) * MobileDirectionalLight.DirectionalLightColor.rgb * (Lighting.Diffuse + Lighting.Specular * MobileDirectionalLight.DirectionalLightDistanceFadeMADAndSpecularScale.z);
-
- // 处理反射(IBL, 反射捕捉器).
- #if APPLY_REFLECTION
- uint NumCulledEntryIndex = (ForwardLightData.NumGridCells + GridIndex) * NUM_CULLED_LIGHTS_GRID_STRIDE;
- uint NumLocalReflectionCaptures = min(ForwardLightData.NumCulledLightsGrid[NumCulledEntryIndex + 0], ForwardLightData.NumReflectionCaptures);
- uint DataStartIndex = ForwardLightData.NumCulledLightsGrid[NumCulledEntryIndex + 1];
-
- float3 SpecularIBL = CompositeReflectionCapturesAndSkylight(
- 1.0f,
- WorldPosition,
- ReflectionVector,//RayDirection,
- GBuffer.Roughness,
- GBuffer.IndirectIrradiance,
- 1.0f,
- 0.0f,
- NumLocalReflectionCaptures,
- DataStartIndex,
- 0,
- true);
-
- Color += SpecularIBL * ShadingModelContext.SpecularColor;
- #elif APPLY_SKY_REFLECTION
- float SkyAverageBrightness = 1.0f;
- float3 SpecularIBL = GetSkyLightReflection(ReflectionVector, GBuffer.Roughness, SkyAverageBrightness);
- SpecularIBL *= ComputeMixingWeight(GBuffer.IndirectIrradiance, SkyAverageBrightness, GBuffer.Roughness);
- Color += SpecularIBL * ShadingModelContext.SpecularColor;
- #endif
- // 天空光漫反射.
- half3 SkyDiffuseLighting = GetSkySHDiffuseSimple(GBuffer.WorldNormal);
- Color+= SkyDiffuseLighting * half3(View.SkyLightColor.rgb) * ShadingModelContext.DiffuseColor * GBuffer.GBufferAO;
- half LightAttenuation = ComputeLightFunctionMultiplier(WorldPosition);
-
- #if USE_PREEXPOSURE
- // MobileHDR applies PreExposure in tonemapper
- LightAttenuation *= View.PreExposure;
- #endif
-
- OutColor.rgb = Color.rgb * LightAttenuation;
- OutColor.a = 1;
- }
-
- // 局部光源的PS主入口.
- void MobileRadialLightPS(
- float4 InScreenPosition : TEXCOORD0,
- float4 SVPos : SV_POSITION,
- out half4 OutColor : SV_Target0
- )
- {
- FGBufferData GBuffer = (FGBufferData)0;
- float SceneDepth = 0;
- {
- float2 ScreenUV = InScreenPosition.xy / InScreenPosition.w * View.ScreenPositionScaleBias.xy + View.ScreenPositionScaleBias.wz;
- float4 GBufferA = 0;
- float4 GBufferB = 0;
- float4 GBufferC = 0;
- float4 GBufferD = 0;
- FetchGBuffer(ScreenUV, GBufferA, GBufferB, GBufferC, GBufferD, SceneDepth);
- GBuffer = DecodeGBufferMobile(GBufferA, GBufferB, GBufferC, GBufferD);
- }
-
- // With a perspective projection, the clip space position is NDC * Clip.w
- // With an orthographic projection, clip space is the same as NDC
- float2 ClipPosition = InScreenPosition.xy / InScreenPosition.w * (View.ViewToClip[3][3] < 1.0f ? SceneDepth : 1.0f);
- float3 WorldPosition = mul(float4(ClipPosition, SceneDepth, 1), View.ScreenToWorld).xyz;
- half3 CameraVector = normalize(View.WorldCameraOrigin - WorldPosition);
- half NoV = max(0, dot(GBuffer.WorldNormal, CameraVector));
-
- // 组装光源数据结构体.
- FMobileLightData LightData = (FMobileLightData)0;
- {
- LightData.Position = DeferredLightUniforms.Position;
- LightData.InvRadius = DeferredLightUniforms.InvRadius;
- LightData.Color = DeferredLightUniforms.Color;
- LightData.FalloffExponent = DeferredLightUniforms.FalloffExponent;
- LightData.Direction = DeferredLightUniforms.Direction;
- LightData.SpotAngles = DeferredLightUniforms.SpotAngles;
- LightData.SpecularScale = 1.0;
- LightData.bInverseSquared = INVERSE_SQUARED_FALLOFF;
- LightData.bSpotLight = IS_SPOT_LIGHT;
- }
-
- FMobileShadingModelContext ShadingModelContext = (FMobileShadingModelContext)0;
- {
- half DielectricSpecular = 0.08 * GBuffer.Specular;
- ShadingModelContext.DiffuseColor = GBuffer.BaseColor - GBuffer.BaseColor * GBuffer.Metallic; // 1 mad
- ShadingModelContext.SpecularColor = (DielectricSpecular - DielectricSpecular * GBuffer.Metallic) + GBuffer.BaseColor * GBuffer.Metallic; // 2 mad
- // 计算环境BRDF.
- ShadingModelContext.SpecularColor = GetEnvBRDF(ShadingModelContext.SpecularColor, GBuffer.Roughness, NoV);
- }
-
- // 计算直接光.
- half3 Color = GetDirectLighting(LightData, ShadingModelContext, GBuffer, WorldPosition, CameraVector);
-
- // IES, 光照函数.
- half LightAttenuation = ComputeLightProfileMultiplier(WorldPosition, DeferredLightUniforms.Position, -DeferredLightUniforms.Direction, DeferredLightUniforms.Tangent);
- LightAttenuation*= ComputeLightFunctionMultiplier(WorldPosition);
-
- #if USE_PREEXPOSURE
- // MobileHDR applies PreExposure in tonemapper
- LightAttenuation*= View.PreExposure;
- #endif
-
- OutColor.rgb = Color * LightAttenuation;
- OutColor.a = 1;
- }
以上可知,平行光和局部光源的PS是不同的入口,主要是因为两者的区别较大,平行光直接在主入口计算光照,附带计算了反射(IBL、捕捉器)、天空光漫反射;而局部光源会构建一个光源结构体,进入直接光计算函数,最后处理局部光源特有的IES和光照函数。
另外,获取GBuffer时,采用了SubPass特有的读取模式,不同的着色平台有所不同:
- // Vulkan
- [[vk::input_attachment_index(1)]]
- SubpassInput<float4> GENERATED_SubpassFetchAttachment0;
- #define VulkanSubpassFetch0() GENERATED_SubpassFetchAttachment0.SubpassLoad()
-
- // Metal
- Texture2D<float4> gl_LastFragDataRGBA_1;
- #define SubpassFetchRGBA_1() gl_LastFragDataRGBA_1.Load(uint3(0, 0, 0), 0)
-
- // DX / OpenGL
- Texture2DSampleLevel(GBufferATexture, GBufferATextureSampler, UV, 0);
博主所在的团队正在用UE4开发一种全新的沉浸式体验产品,急需各路豪士一同加入,共谋宏图大业。目前急招以下职位:
要求:对技术有热情,扎实的技术基础,良好的沟通和合作能力,有UE使用经验或移动端开发经验者更佳。
有意向或想了解更多的请添加博主微信:81079389(注明博客园求职),或者发简历到博主邮箱:81079389#qq.com(#换成@)。
静待各路英雄豪杰相会。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。